flake8 Documentation
Release 4.0.0

lan Stapleton Cordasco

Oct 11, 2021

Contents

1 Quickstart

.1 Inmstallation e e e e e e 1
1.2 Using Flake8 L e e e e e e 1
2 FAQ and Glossary 3
2.1 Frequently Asked QUESHIONS i i e e e e e e e e e e 3
2.2 Glossary of Terms Used in Flake8 Documentation 4
3 User Guide 5
3.1 Using Flake8 o . . o o e e e e e 5
32 flake8 34
4 Plugin Developer Guide 39
4.1 Writing Plugins for Flake8 39
5 Contributor Guide 51
5.1 Exploring Flake8’s Internals e 51
6 Release Notes and History 87
6.1 Release Notes and History o o 0 i i e e e e e e e e e e 87
7 General Indices 105
Python Module Index 107
Index 109

CHAPTER 1

Quickstart

1.1 Installation

To install F1lake8, open an interactive shell and run:

’python<version> -m pip install flake8

If you want Flake8 to be installed for your default Python installation, you can instead use:

’python -m pip install flake8

Note: It is very important to install Flake8 on the correct version of Python for your needs. If you want Flake8
to properly parse new language features in Python 3.5 (for example), you need it to be installed on 3.5 for Flake8 to
understand those features. In many ways, FlakeS8 is tied to the version of Python on which it runs.

1.2 Using Flake8

To start using Flake8, open an interactive shell and run:

flake8 path/to/code/to/check.py
or
flake8 path/to/code/

Note: If you have installed Flake8 on a particular version of Python (or on several versions), it may be best to
instead run python<version> -m flake8.

If you only want to see the instances of a specific warning or error, you can select that error like so:

flake8 Documentation, Release 4.0.0

’flakeS -—select E123,W503 path/to/code/

Alternatively, if you want to ignore only one specific warning or error:

’flakeS ——ignore E24,W504 path/to/code/

Please read our user guide for more information about how to use and configure Flake8.

2 Chapter 1. Quickstart

CHAPTER 2

FAQ and Glossary

2.1 Frequently Asked Questions

2.1.1 When is Flake8 released?

Flake38 is released as necessary. Sometimes there are specific goals and drives to get to a release. Usually, we release
as users report and fix bugs.

2.1.2 How can | help Flake8 release faster?

Look at the next milestone. If there’s work you can help us complete, that will help us get to the next milestone.
If there’s a show-stopping bug that needs to be released, let us know but please be kind. Flake8 is developed and
released entirely on volunteer time.

2.1.3 What is the next version of Flake8?

In general we try to use milestones to indicate this. If the last release on PyPI is 3.1.5 and you see a milestone for 3.2.0
in GitHub, there’s a good chance that 3.2.0 is the next release.

2.1.4 Why does Flake8 use ranges for its dependencies?

Flake8 uses ranges for mccabe, pyflakes, and pycodestyle because each of those projects tend to add new checks in
minor releases. It has been an implicit design goal of Flake8’s to make the list of error codes stable in its own minor
releases. That way if you install something from the 2.5 series today, you will not find new checks in the same series
in a month from now when you install it again.

Flake8’s dependencies tend to avoid new checks in patch versions which is why Flake8 expresses its dependencies
roughly as:

flake8 Documentation, Release 4.0.0

pycodestyle >= 2.0.0, < 2.1.0
pyflakes >= 0.8.0, !=1.2.0, !=1.2.1, !=1.2.2, < 1.3.0
mccabe >= 0.5.0, < 0.6.0

This allows those projects to release patch versions that fix bugs and for Flake8 users to consume those fixes.

2.1.5 Should I file an issue when a new version of a dependency is available?

No. The current Flake8 core team (of one person) is also a core developer of pycodestyle, pyflakes, and mccabe. They
are aware of these releases.

2.2 Glossary of Terms Used in Flake8 Documentation

check A piece of logic that corresponds to an error code. A check may be a style check (e.g., check the length of
a given line against the user configured maximum) or a lint check (e.g., checking for unused imports) or some
other check as defined by a plugin.

class

error class A larger grouping of related error codes. For example, W503 and W504 are two codes related to whites-
pace. W50 would be the most specific class of codes relating to whitespace. W would be the warning class that
subsumes all whitespace errors.

error
error code

violation The symbol associated with a specific check. For example, pycodestyle implements checks that look for
whitespace around binary operators and will either return an error code of W503 or W504.

formatter A plugin that augments the output of Flake8 when passed to f1ake8 ——-format.

mccabe The project Flake8 depends on to calculate the McCabe complexity of a unit of code (e.g., a function).
This uses the C class of error codes.

plugin A package that is typically installed from PyPI to augment the behaviour of Flake8 either through adding
one or more additional checks or providing additional formatters.

pycodestyle The project Flake8 depends on to provide style enforcement. pycodestyle implements checks for PEP
8. This uses the E and W classes of error codes.

pyflakes The project Flake8 depends on to lint files (check for unused imports, variables, etc.). This uses the F
class of error codes reported by FlakeS8.

warning Typically the W class of error codes from pycodestyle.

4 Chapter 2. FAQ and Glossary

https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

CHAPTER 3

User Guide

All users of Flake8 should read this portion of the documentation. This provides examples and documentation
around Flake8’s assortment of options and how to specify them on the command-line or in configuration files.

3.1 Using Flake8

Flake8 can be used in many ways. A few:
* invoked on the command-line
* invoked via Python

This guide will cover all of these and the nuances for using FlakeS8.

Note: This portion of Flake8’s documentation does not cover installation. See the Installation section for how to
install Flake8.

3.1.1 Invoking Flake8

Once you have installed Flake8, you can begin using it. Most of the time, you will be able to generically invoke
Flake38 like so:

$ flake8 ...

Where you simply allow the shell running in your terminal to locate Flake8. In some cases, though, you may have
installed Flake8 for multiple versions of Python (e.g., Python 3.8 and Python 3.9) and you need to call a specific
version. In that case, you will have much better results using:

$ python3.8 -m flake$
Or

$ python3.9 -m flake8

flake8 Documentation, Release 4.0.0

Since that will tell the correct version of Python to run Flake8.

Note: Installing Flake8 once will not install it on both Python 3.8 and Python 3.9. It will only install it for the
version of Python that is running pip.

It is also possible to specify command-line options directly to Flake8:
$ flake8 --select E123
Or

$ python<version> -m flake8 —--select E123

Note: This is the last time we will show both versions of an invocation. From now on, we’ll simply use f1ake8 and
assume that the user knows they can instead use python<version> -m flakeS8 instead.

It’s also possible to narrow what Flake8 will try to check by specifying exactly the paths and directories you want it
to check. Let’s assume that we have a directory with python files and sub-directories which have python files (and may
have more sub-directories) called my_project. Then if we only want errors from files found inside my_project
we can do:

$ flake8 my_project

And if we only want certain errors (e.g., E123) from files in that directory we can also do:

$ flake8 --select E123 my_project

If you want to explore more options that can be passed on the command-line, you can use the ——he1p option:
$ flake8 —--help

And you should see something like:

Usage: flake8 [options] file file

Options:

—--version show program's version number and exit

-h, --help show this help message and exit

-v, ——-verbose Print more information about what is happening in
flake8. This option is repeatable and will increase
verbosity each time it is repeated.

-q, ——quiet Report only file names, or nothing. This option is
repeatable.

—-—count Print total number of errors and warnings to standard
error and set the exit code to 1 if total is not
empty.

-—diff Report changes only within line number ranges in the
unified diff provided on standard in by the user.

—-—exclude=patterns Comma-separated list of files or directories to
exclude. (Default:

.svn, CVS, .bzr, .hg, .git,__pycache__, .tox, .eggs, x.egqg)

—-—filename=patterns Only check for filenames matching the patterns in this
comma-separated list. (Default: =*.py)

—-—format=format Format errors according to the chosen formatter.

—--hang-closing Hang closing bracket instead of matching indentation
of opening bracket's line.

——ignore=errors Comma-separated list of errors and warnings to ignore
(or skip). For example, " --ignore=E4,E51,W234°".

(continues on next page)

6 Chapter 3. User Guide

flake8 Documentation, Release 4.0.0

(continued from previous page)

(Default: E121,E123,E126,E226,E24,E704)
—-—extend-ignore=errors
Comma-separated list of errors and warnings to add to

the list of ignored ones. For example, ~ —--extend-
ignore=E4,E51,W234" .

—--max—-line-length=n Maximum allowed line length for the entirety of this
run. (Default: 79)

——select=errors Comma-separated list of errors and warnings to enable.
For example, " "--select=E4,E51,W234"". (Default:)

——extend-select errors
Comma-separated list of errors and warnings to add to

the list of selected ones. For example, "~ —--extend-
select=E4,E51,W234" " .
——disable-noga Disable the effect of "# noga". This will report
errors on lines with "# noga" at the end.
—-—-show-source Show the source generate each error or warning.
—-—-statistics Count errors and warnings.

——enabled-extensions=ENABLED_EXTENSIONS
Enable plugins and extensions that are otherwise
disabled by default

—-—exit-zero Exit with status code "0" even if there are errors.

-3 JOBS, —--jobs=JOBS Number of subprocesses to use to run checks in
parallel. This is ignored on Windows. The default,
"auto", will auto-detect the number of processors
available to use. (Default: auto)

——output-file=0UTPUT_FILE
Redirect report to a file.

-—tee Write to stdout and output-file.

——append-config=APPEND_CONFIG
Provide extra config files to parse in addition to the
files found by Flake8 by default. These files are the
last ones read and so they take the highest precedence
when multiple files provide the same option.

——config=CONFIG Path to the config file that will be the authoritative
config source. This will cause Flake8 to ignore all
other configuration files.

—--isolated Ignore all configuration files.
——builtins=BUILTINS define more built-ins, comma separated
——doctests check syntax of the doctests

——include-in-doctest=INCLUDE_IN_DOCTEST

Run doctests only on these files
——exclude-from-doctest=EXCLUDE_FROM_DOCTEST

Skip these files when running doctests

Installed plugins: pyflakes: 1.0.0, pep8: 1.7.0

3.1.2 Configuring Flake8

Once you have learned how to invoke Flake8, you will soon want to learn how to configure it so you do not have to
specify the same options every time you use it.

This section will show you how to make
S flake8

Remember that you want to specify certain options without writing

3.1. Using Flake8 7

flake8 Documentation, Release 4.0.0

$ flake8 ——-select E123,W456 —--enable-extensions H111

Configuration Locations

Flake8 supports storing its configuration in the following places:
* Your top-level user directory
* In your project in one of setup.cfg, tox.ini,or . flake8.

Values set at the command line have highest priority, then those in the project configuration file, then those in your
user directory, and finally there are the defaults. However, there are additional command line options which can alter
this.

“User” Configuration

Flake8 allows a user to use “global” configuration file to store preferences. The user configuration file is expected
to be stored somewhere in the user’s “home” directory.

* On Windows the “home” directory will be something like C: \\Users\sigmavirus24, ak.a, ~\.
* On Linux and other Unix like systems (including OS X) we will look in ~ /.
Note that F1ake8 looks for ~\ . f1ake8 on Windows and ~/ . config/flake8 on Linux and other Unix systems.

User configuration files use the same syntax as Project Configuration files. Keep reading to see that syntax.

Project Configuration

Flake8 is written with the understanding that people organize projects into sub-directories. Let’s take for example
Flake8’s own project structure

flake8
— docs
build
source
_static
_templates
dev
internal
user
—— flake8
— formatting
— main
— options
— plugins
L— tests

— fixtures

— config files
— integration

L— unit

In the top-level £1ake8 directory (which contains docs, flake8, and tests) there’s also tox.ini and setup.
cfg files. In our case, we keep our Flake8 configuration in tox . ini. Regardless of whether you keep your config
in .flake8, setup.cfg, or tox.ini we expect you to use INI to configure Flake8 (since each of these files
already uses INI as a format). This means that any Flake8 configuration you wish to set needs to be in the f1ake8
section, which means it needs to start like so:

8 Chapter 3. User Guide

flake8 Documentation, Release 4.0.0

[flake8]

Each command-line option that you want to specify in your config file can be named in either of two ways:
1. Using underscores (_) instead of hyphens (-)
2. Simply using hyphens (without the leading hyphens)

Note: Not every Flake8 command-line option can be specified in the configuration file. See our list of options to
determine which options will be parsed from the configuration files.

Let’s actually look at F1lake8’s own configuration section:

[flake8]

ignore = D203

exclude = .git,__pycache__,docs/source/conf.py,o0ld,build,dist

max—-complexity = 10

This is equivalent to:

$ flake8 --ignore D203 -—-exclude .git,__pycache__,docs/source/conf.py,o0ld,build,dist

In our case, if we wanted to, we could also do

[flake8]

ignore = D203

exclude =
.git,
__pycache__,
docs/source/conf.py,
old,
build,
dist

max—-complexity = 10

This allows us to add comments for why we’re excluding items, e.g.

[flake8]
ignore = D203
exclude =
No need to traverse our git directory
.git,
There's no value in checking cache directories
__pycache__,
The conf file is mostly autogenerated, ignore it
docs/source/conf.py,
The old directory contains Flake8 2.0

old,
This contains our built documentation
build,
This contains builds of flake8 that we don't want to check
dist
max—-complexity = 10

Note: Following the recommended settings for Python’s configparser, Flake8 does not support inline comments
for any of the keys. So while this is fine:

3.1. Using Flake8 9

https://docs.python.org/3/library/configparser.html#customizing-parser-behaviour

flake8 Documentation, Release 4.0.0

[flake8]

per—-file-ignores =
imported but unused
__init___.py: F401

this is not:

[flake8]
per—-file-ignores =
__init__ .py: F401 # imported but unused

Note: If you’re using Python 2, you will notice that we download the configparser backport from PyPI. That
backport enables us to support this behaviour on all supported versions of Python.

Please do not open issues about this dependency to Flake8.

Note: You can also specify ——max-complexity asmax_complexity = 10.

This is also useful if you have a long list of error codes to ignore. Let’s look at a portion of a project’s Flake8
configuration in their tox.ini:

[flake8]

it's not a bug that we aren't using all of hacking, ignore:

F812: list comprehension redefines

H101: Use TODO (NAME)

H202: assertRaises Exception too broad

H233: Python 3.x incompatible use of print operator

H301: one import per line

H306: imports not in alphabetical order (time, os)

H401: docstring should not start with a space

H403: multi line docstrings should end on a new line

H404: multi line docstring should start without a leading new line
H405: multi line docstring summary not separated with an empty line
H501: Do not use self.__dict__ for string formatting

ignore = F812,H101,H202,H233,H301,H306,H401,H403,H404,H405,H501

They use the comments to describe the check but they could also write this as:

[flake8]
it's not a bug that we aren't using all of hacking
ignore =
F812: 1list comprehension redefines
Fg8l2,
H101: Use TODO (NAME)
H101,
H202: assertRaises Exception too broad
H202,
H233: Python 3.x incompatible use of print operator
H233,
H301: one import per line
H301,
H306: imports not in alphabetical order (time, os)
H306,

(continues on next page)

10 Chapter 3. User Guide

https://docs.python.org/3/library/configparser.html#module-configparser

flake8 Documentation, Release 4.0.0

(continued from previous page)

H401: docstring should not start with a space

H401,

H403: multi line docstrings should end on a new line

H403,

H404: multi line docstring should start without a leading new line
H404,

H405: multi line docstring summary not separated with an empty line
H405,

H501: Do not use self.__dict__ for string formatting

H501

Or they could use each comment to describe why they’ve ignored the check. Flake8 knows how to parse these lists
and will appropriately handle these situations.

Using Local Plugins

New in version 3.5.0.

Flake8 allows users to write plugins that live locally in a project. These plugins do not need to use setuptools or
any of the other overhead associated with plugins distributed on PyPI. To use these plugins, users must specify them
in their configuration file (i.e., . flake8, setup.cfqg, or tox.ini). This must be configured in a separate INI
section named flake8:local-plugins.

Users may configure plugins that check source code, i.e., extension plugins, and plugins that report errors, i.e.,
report plugins.

An example configuration might look like:

[flake8:local-plugins]
extension =
MC1l = project.flake8.checkers:MyCheckerl
MC2 = project.flake8.checkers:MyChecker2
report =
MR1 = project.flake8.reporters:MyReporterl
MR2 = project.flake8.reporters:MyReporter?2

Flake8 will also, however, allow for commas to separate the plugins for example:

[flake8:local-plugins]
extension =
MC1l = project.flake8.checkers:MyCheckerl,
MC2 = project.flake8.checkers:MyChecker?2
report =
MR1 = project.flake8.reporters:MyReporterl,
MR2 = project.flake8.reporters:MyReporter?

These configurations will allow you to select your own custom reporter plugin that you’ve designed or will utilize your
new check classes.

If your package is installed in the same virtualenv that Flake8 will run from, and your local plugins are part of that
package, you're all set; Flake8 will be able to import your local plugins. However, if you are working on a project
that isn’t set up as an installable package, or Flake8 doesn’t run from the same virtualenv your code runs in, you
may need to tell Flake8 where to import your local plugins from. You can do this via the paths option in the
local-plugins section of your config:

3.1. Using Flake8 11

flake8 Documentation, Release 4.0.0

[flake8:local-plugins]
extension =

MC1l = myflake8plugin:MyCheckerl
paths =

./path/to

Relative paths will be interpreted relative to the config file. Multiple paths can be listed (comma separated just like
exclude) as needed. If your local plugins have any dependencies, it’s up to you to ensure they are installed in
whatever Python environment Flake8 runs in.

Note: These plugins otherwise follow the same guidelines as regular plugins.

3.1.3 Full Listing of Options and Their Descriptions

Index of Options

e flake8 —--version

e flake8 ——-help

s flake8 —--verbose

e flake8 —-—-quiet

e flake8 —--count

e flake8 ——-diff

s flake8 —--exclude

e flake8 ——-filename

e flake8 —--stdin-display—-name
e flake8 ——-format

e flake8 —-—-hang-closing

e flake8 —--ignore

e flake8 —-—-extend-ignore

s flake8 —-per—file—-ignores
e flake8 —--max—-1line-length
e flake8 —--max—-doc-length

s flake8 —-—-indent-size

e flake8 —--select

e flake8 —-—-extend-select

e flake8 —--disable-noga

s flake8 ——-show-source

* flake8 —--statistics

e flake8 —--enable-extensions

e flake8 ——-exit-zero

12 Chapter 3. User Guide

flake8 Documentation, Release 4.0.0

flake8 —-—-jobs

flake8 ——output-file

flake8 —--tee

flake8 —-—append-config
flake8 —--config

flake8 —--isolated

flake8 —--builtins

flake8 ——-doctests

flake8 —-include-in-doctest
flake8 ——exclude—-from—-doctest
flake8 ——-benchmark

flake8 —-—-bug-report

flake8 —--max-complexity

Options and their Descriptions

——version

-v,

Go back to index

Show Flake8’s version as well as the versions of all plugins installed.

Command-line usage:
$ flake8 --version

This can not be specified in config files.

——help
Go back to index

Show a description of how to use Flake8 and its options.

Command-line usage:

$ flake8 --help
$ flake8 -h

This can not be specified in config files.

—-verbose
Go back to index

Increase the verbosity of Flake8’s output. Each time you specify it, it will print more and more information.

Command-line example:
$ flake8 -vv

This can not be specified in config files.

3.1.

Using Flake8

13

flake8 Documentation, Release 4.0.0

-q,

——quiet
Go back to index

Decrease the verbosity of Flake8’s output. Each time you specify it, it will print less and less information.

Command-line example:
$ flake8 -g

This can be specified in config files.

Example config file usage:

quiet = 1

——count

Go back to index
Print the total number of errors.

Command-line example:
$ flake8 —--count dir/

This can be specified in config files.

Example config file usage:

count = True

—-—-diff

Go back to index

Use the unified diff provided on standard in to only check the modified files and report errors included in the
diff.

Command-line example:
$ git diff -u | flake8 —--diff

This can not be specified in config files.

——exclude=<patterns>

Go back to index
Provide a comma-separated list of glob patterns to exclude from checks.
This defaults to: .svn,CVS, .bzr, .hg, .git,__pycache_ , .tox, .eggs, x.egg
Example patterns:
¢ «.pyc will match any file that ends with . pyc
e _ pycache__ will match any path that has __pycache___init
* lib/python will look expand that using os . path.abspath () and look for matching paths

Command-line example:

$ flake8 —--exclude=x.pyc dir/

14

Chapter 3. User Guide

https://docs.python.org/3/library/os.path.html#os.path.abspath

flake8 Documentation, Release 4.0.0

This can be specified in config files.

Example config file usage:

exclude =
.tox,
__pycache___

——extend-exclude=<patterns>
Go back to index

New in version 3.8.0.

Provide a comma-separated list of glob patterns to add to the list of excluded ones. Similar considerations as in
——exclude apply here with regard to the value.

The difference to the ——exc1ude option is, that this option can be used to selectively add individual patterns
without overriding the default list entirely.

Command-line example:
$ flake8 —--extend-exclude=legacy/,vendor/ dir/

This can be specified in config files.

Example config file usage:

extend-exclude =
legacy/,
vendor/
extend-exclude = legacy/,vendor/

——filename=<patterns>
Go back to index

Provide a comma-separate list of glob patterns to include for checks.
This defaults to: x .py
Example patterns:
¢ «.py will match any file that ends with . py
e _ pycache__ will match any path that has __pycache___init
* lib/python will look expand that using os . path.abspath () and look for matching paths

Command-line example:
$ flake8 —--filename=*.py dir/

This can be specified in config files.

Example config file usage:

filename =
example.py,
another—-examplex.py

—-stdin-display—-name=<display_name>
Go back to index

Provide the name to use to report warnings and errors from code on stdin.

3.1. Using Flake8 15

https://docs.python.org/3/library/os.path.html#os.path.abspath

flake8 Documentation, Release 4.0.0

Instead of reporting an error as something like:

stdin:82:73 E501 line too long

You can specify this option to have it report whatever value you want instead of stdin.
This defaults to: stdin

Command-line example:
$ cat file.py | flake8 —--stdin-display-name=file.py -

This can not be specified in config files.

——format=<format>

Go back to index
Select the formatter used to display errors to the user.
This defaults to: default
By default, there are two formatters available:
¢ default
* pylint

Other formatters can be installed. Refer to their documentation for the name to use to select them. Further, users
can specify their own format string. The variables available are:

e code
e col

* path
* oW
e text

The default formatter has a format string of:

Command-line example:

$ flake8 —-format=pylint dir/
$ flake8 —-format='%(path)s::%(row)d, % (col)d::%(code)s::%(text)s' dir/

This can be specified in config files.

Example config file usage:

format=pylint
format=% (path)s::%(row)d, % (col)d::%(code)s::%(text)s

—--hang-closing

Go back to index

Toggle whether pycodestyle should enforce matching the indentation of the opening bracket’s line. When you
specify this, it will prefer that you hang the closing bracket rather than match the indentation.

Command-line example:

16

Chapter 3. User Guide

flake8 Documentation, Release 4.0.0

$ flake8 —--hang-closing dir/

This can be specified in config files.

Example config file usage:

hang_closing = True
hang-closing = True

——ignore=<errors>
Go back to index

Specify a list of codes to ignore. The list is expected to be comma-separated, and does not need to specify
an error code exactly. Since Flake8 3.0, this can be combined with ——select. See ——select for more
information.

For example, if you wish to only ignore W2 34, then you can specify that. But if you want to ignore all codes
that start with W23 you need only specify W2 3 to ignore them. This also works for W2 and W (for example).

This defaults to: E121,E123,E126,E226,E24,E704,W503,W504

Command-line example:

$ flake8 --ignore=E121,E123 dir/
$ flake8 —--ignore=E24,E704 dir/

This can be specified in config files.

Example config file usage:

ignore =
E121,
E123
ignore = E121,E123

—-extend-ignore=<errors>
Go back to index

New in version 3.6.0.

Specify a list of codes to add to the list of ignored ones. Similar considerations as in ——ignore apply here
with regard to the value.

The difference to the ——ignore option is, that this option can be used to selectively add individual codes
without overriding the default list entirely.

Command-line example:
$ flake8 —--extend-ignore=E4,E51,W234 dir/

This can be specified in config files.

Example config file usage:

extend-ignore =
E4,
ES51,
w234
extend-ignore = E4,E51,W234

3.1. Using Flake8 17

flake8 Documentation, Release 4.0.0

——per—-file-ignores=<filename:errors>[<filename:errors>]

Go back to index
New in version 3.7.0.

Specify a list of mappings of files and the codes that should be ignored for the entirety of the file. This allows
for a project to have a default list of violations that should be ignored as well as file-specific violations for files
that have not been made compliant with the project rules.

This option supports syntax similar to ——excIude such that glob patterns will also work here.

This can be combined with both ——ignore and ——extend-ignore to achieve a full flexibility of style
options.

Command-line usage:

$ flake8 —--per-file-ignores='project/__init__.py:F401 setup.py:E121'
$ flake8 --per—-file-ignores='project/x/__init__ .py:F401 setup.py:E121'

This can be specified in config files.

per—-file—-ignores =
project/__init__ .py:F401
setup.py:E121
other_project/*:W9

—-max-line-length=<n>

Go back to index
Set the maximum length that any line (with some exceptions) may be.

Exceptions include lines that are either strings or comments which are entirely URLs. For example:

https://some-super—long-domain—-name.com/with/some/very/long/path

url = (
"http://..."

This defaults to: 79

Command-line example:
$ flake8 —--max—-line-length 99 dir/

This can be specified in config files.

Example config file usage:

max—line—-length = 79

—-max—-doc-length=<n>

Go back to index
Set the maximum length that a comment or docstring line may be.
By default, there is no limit on documentation line length.

Command-line example:

$ flake8 —--max-doc-length 99 dir/

18

Chapter 3. User Guide

flake8 Documentation, Release 4.0.0

This can be specified in config files.

Example config file usage:

max—doc—-length = 79

—-indent-size=<n>
Go back to index

Set the number of spaces used for indentation.
By default, 4.

Command-line example:
$ flake8 —--indent-size 2 dir/

This can be specified in config files.

Example config file usage:

indent-size = 2

—-—-select=<errors>
Go back to index

Specify the list of error codes you wish Flake8 to report. Similarly to ——ignore. You can specify a portion
of an error code to get all that start with that string. For example, you can use E, E4, E43, and E431.

This defaults to: E, F, W, C90

Command-line example:

$ flake8 —--select=E431,E5,W,F dir/
$ flake8 —--select=E,W dir/

This can also be combined with ——ignore:
$ flake8 —--select=E --ignore=E432 dir/

This will report all codes that start with E, but ignore E4 32 specifically. This is more flexibly than the Flake8
2.x and 1.x used to be.

This can be specified in config files.

Example config file usage:

select =
E431,
w,
F

——extend-select=<errors>
Go back to index

New in version 4.0.0.

Specify a list of codes to add to the list of selected ones. Similar considerations as in ——select apply here
with regard to the value.

The difference to the ——select option is, that this option can be used to selectively add individual codes
without overriding the default list entirely.

3.1. Using Flake8 19

flake8 Documentation, Release 4.0.0

Command-line example:
S flake8 ——extend-select=E4,E51,W234 dir/

This can be specified in config files.

Example config file usage:

extend-select =
E4,
ES51,
W234

——disable—-noga
Go back to index

Report all errors, even if it is on the same line as a # NOQA comment. # NOQA can be used to silence messages
on specific lines. Sometimes, users will want to see what errors are being silenced without editing the file. This
option allows you to see all the warnings, errors, etc. reported.

Command-line example:
$ flake8 —--disable-noga dir/

This can be specified in config files.

Example config file usage:

disable_noga = True
disable-noga = True

——show—-source
Go back to index

Print the source code generating the error/warning in question.

Command-line example:
$ flake8 --show-source dir/

This can be specified in config files.

Example config file usage:

show_source = True
show-source = True
——statistics

Go back to index
Count the number of occurrences of each error/warning code and print a report.

Command-line example:
$ flake8 —--statistics

This can be specified in config files.

Example config file usage:

20 Chapter 3. User Guide

flake8 Documentation, Release 4.0.0

statistics = True

——enable-extensions=<errors>
Go back to index

Enable off-by-default extensions.

Plugins to Flake8 have the option of registering themselves as off-by-default. These plugins effectively add
themselves to the default ignore list.

Command-line example:
$ flake8 —--enable-extensions=H111l dir/

This can be specified in config files.

Example config file usage:

enable-extensions =
H111,
G123
enable_extensions =
H111,
G123

——exit-zero
Go back to index

Force Flake8 to use the exit status code 0 even if there are errors.
By default F1lake8 will exit with a non-zero integer if there are errors.

Command-line example:
$ flake8 —--exit-zero dir/

This can not be specified in config files.

——jobs=<n>
Go back to index

Specify the number of subprocesses that Flake8 will use to run checks in parallel.

Note: This option is ignored on platforms where fork is not a supported mult iprocessing method.

This defaults to: auto

The default behaviour will use the number of CPUs on your machine as reported by multiprocessing.
cpu_count ().

Command-line example:
$ flake8 —--jobs=8 dir/

This can be specified in config files.

Example config file usage:

3.1. Using Flake8 21

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.cpu_count
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.cpu_count

flake8 Documentation, Release 4.0.0

jobs = 8

——output-file=<path>
Go back to index

Redirect all output to the specified file.

Command-line example:

$ flake8 —--output-file=output.txt dir/
$ flake8 -vv —--output-file=output.txt dir/

--tee
Go back to index

Also print output to stdout if output-file has been configured.

Command-line example:
$ flake8 —--tee —-output-file=output.txt dir/

This can be specified in config files.

Example config file usage:

output-file = output.txt
tee = True

——-append-config=<config>
Go back to index

New in version 3.6.0.

Provide extra config files to parse in after and in addition to the files that F1lake8 found on its own. Since these
files are the last ones read into the Configuration Parser, so it has the highest precedence if it provides an option
specified in another config file.

Command-line example:
$ flake8 —--append-config=my-extra-config.ini dir/

This can not be specified in config files.

——config=<config>
Go back to index

Provide a path to a config file that will be the only config file read and used. This will cause F1ake8 to ignore
all other config files that exist.

Command-line example:
$ flake8 --config=my-only-config.ini dir/

This can not be specified in config files.

——isolated
Go back to index

Ignore any config files and use Flake8 as if there were no config files found.

Command-line example:

22 Chapter 3. User Guide

flake8 Documentation, Release 4.0.0

$ flake8 —--isolated dir/

This can not be specified in config files.

—=builtins=<builtins>
Go back to index

Provide a custom list of builtin functions, objects, names, etc.

This allows you to let pyflakes know about builtins that it may not immediately recognize so it does not report
warnings for using an undefined name.

This is registered by the default PyFlakes plugin.

Command-line example:
$ flake8 —--builtins=_,_LE,_LW dir/

This can be specified in config files.

Example config file usage:

builtins =
p—
_LE ’
LW

——doctests
Go back to index

Enable PyFlakes syntax checking of doctests in docstrings.
This is registered by the default PyFlakes plugin.

Command-line example:
$ flake8 —--doctests dir/

This can be specified in config files.

Example config file usage:

doctests = True

——include—-in-doctest=<paths>
Go back to index

Specify which files are checked by PyFlakes for doctest syntax.
This is registered by the default PyFlakes plugin.

Command-line example:

$ flake8 —--include-in-doctest=dir/subdir/file.py,dir/other/file.py dir/

This can be specified in config files.

Example config file usage:

3.1. Using Flake8 23

flake8 Documentation, Release 4.0.0

include—-in-doctest =
dir/subdir/file.py,
dir/other/file.py

include_in_doctest =
dir/subdir/file.py,
dir/other/file.py

——exclude—-from—-doctest=<paths>

Go back to index
Specify which files are not to be checked by PyFlakes for doctest syntax.
This is registered by the default PyFlakes plugin.

Command-line example:
$ flake8 —--exclude-from-doctest=dir/subdir/file.py,dir/other/file.py dir/

This can be specified in config files.

Example config file usage:

exclude-from-doctest =
dir/subdir/file.py,
dir/other/file.py

exclude_from doctest =
dir/subdir/file.py,
dir/other/file.py

——benchmark

Go back to index
Collect and print benchmarks for this run of Flake8. This aggregates the total number of:
* tokens
* physical lines
* logical lines
* files
and the number of elapsed seconds.

Command-line usage:
$ flake8 --benchmark dir/

This can not be specified in config files.

—--bug-report

Go back to index

Generate information necessary to file a complete bug report for Flake8. This will pretty-print a JSON blob that
should be copied and pasted into a bug report for FlakeS8.

Command-line usage:
$ flake8 --bug-report

The output should look vaguely like:

24

Chapter 3. User Guide

flake8 Documentation, Release 4.0.0

"dependencies": [
{
"dependency":
"version": "25.1.1"
}
]I
"platform": {

"setuptools",

"python_implementation”: "CPython",
"python_version": "2.7.12",
"system": "Darwin"
}I
"plugins": [
{
"plugin": "mccabe",
"version": "0.5.1"
}I
{
"plugin": "pycodestyle",
"version": "2.0.0"
}I
{
"plugin": "pyflakes",
"version": "1.2.3"
}
]I
"version": "3.1.0.dev0O"

This can not be specified in config files.

—-max—-complexity=<n>
Go back to index

Set the maximum allowed McCabe complexity value for a block of code.
This option is provided by the mccabe dependency’s Flake8 plugin.

Command-line usage:
$ flake8 —--max-complexity 15 dir/

This can be specified in config files.

Example config file usage:

max—-complexity = 15

3.1.4 Error/ Violation Codes

Flake8 and its plugins assign a code to each message that we refer to as an error code (or violation). Most plugins will

list their error codes in their documentation or README.

Flake8 installs pycodestyle, pyflakes, and mccabe by default and generates its own error codes for

pyflakes:

3.1. Using Flake8

flake8 Documentation, Release 4.0.0

Code | Example Message

F401 | module imported but unused

F402 | import module from line N shadowed by loop variable
F403 ‘from module import *’ used; unable to detect undefined names
F404 | future import(s) name after other statements

F405 | name may be undefined, or defined from star imports: module
F406 | ‘from module import *’ only allowed at module level
F407 an undefined ___future__ feature name was imported
F501 | invalid % format literal

F502 | % format expected mapping but got sequence

F503 | % format expected sequence but got mapping

F504 | % format unused named arguments

F505 | % format missing named arguments

F506 | % format mixed positional and named arguments

F507 | % format mismatch of placeholder and argument count
F508 | % format with * specifier requires a sequence

F509 | % format with unsupported format character

F521 .format (...) invalid format string

F522 .format (...) unused named arguments

F523 .format (...) unused positional arguments

F524 | .format (...) missing argument

F525 .format (...) mixing automatic and manual numbering
F541 | f-string without any placeholders

F601 | dictionary key name repeated with different values

F602 | dictionary key variable name repeated with different values
F621 | too many expressions in an assignment with star-unpacking
F622 | two or more starred expressions in an assignment (a, b, xc = d)
F631 | assertion test is a tuple, which is always True

F632 | use ==/!=to compare str, bytes, and int literals
F633 | use of >> is invalid with print function

F634 | if testis a tuple, which is always True

F701 | abreak statement outside of a while or for loop

F702 | a continue statement outside of a while or for loop
F703 | acontinue statementina finally block in a loop
F704 | ayieldoryield from statement outside of a function
F705 | a return statement with arguments inside a generator
F706 | a return statement outside of a function/method

F707 | an except: block as not the last exception handler

F721 | syntax error in doctest

F722 | syntax error in forward annotation

F723 | syntax error in type comment

F811 | redefinition of unused name from line N

F821 | undefined name name

F822 | undefined name namein__all_

F823 | local variable name ... referenced before assignment

F831 | duplicate argument name in function definition

F841 | local variable name is assigned to but never used

Continued on next page

26

Chapter 3. User Guide

flake8 Documentation, Release 4.0.0

Table 1 — continued from previous page
Code | Example Message

Fo01 raise NotImplemented shouldbe raise NotImplementedError

We also report one extra error: E999. We report E999 when we fail to compile a file into an Abstract Syntax Tree for
the plugins that require it.

mccabe only ever reports one violation - C901 based on the complexity value provided by the user.

Users should also reference pycodestyle’s list of error codes.

3.1.5 Selecting and Ignoring Violations

It is possible to select and ignore certain violations reported by Flake8 and the plugins we’ve installed. It’s also
possible as of Flake8 3.0 to combine usage of f1ake8 --select and flake8 —-ignore. This chapter of
the User Guide aims to educate about how Flake8 will report errors based on different inputs.

Ignoring Violations with Flake8

By default, Flake8 has a list of error codes that it ignores. The list used by a version of Flake8 may be different
than the list used by a different version. To see the default list, f1ake8 ——help will show the output with the
cur