
flake8 Documentation
Release 3.7.6

Ian Stapleton Cordasco

Feb 18, 2019

Contents

1 Quickstart 1
1.1 Installation . 1
1.2 Using Flake8 . 1

2 FAQ and Glossary 3
2.1 Frequently Asked Questions . 3
2.2 Glossary of Terms Used in Flake8 Documentation . 4

3 User Guide 5
3.1 Using Flake8 . 5
3.2 flake8 . 34

4 Plugin Developer Guide 37
4.1 Writing Plugins for Flake8 . 37

5 Contributor Guide 49
5.1 Exploring Flake8’s Internals . 49

6 Release Notes and History 85
6.1 Release Notes and History . 85

7 General Indices 99

Python Module Index 101

i

ii

CHAPTER 1

Quickstart

1.1 Installation

To install Flake8, open an interactive shell and run:

python<version> -m pip install flake8

If you want Flake8 to be installed for your default Python installation, you can instead use:

python -m pip install flake8

Note: It is very important to install Flake8 on the correct version of Python for your needs. If you want Flake8
to properly parse new language features in Python 3.5 (for example), you need it to be installed on 3.5 for Flake8 to
understand those features. In many ways, Flake8 is tied to the version of Python on which it runs.

1.2 Using Flake8

To start using Flake8, open an interactive shell and run:

flake8 path/to/code/to/check.py
or
flake8 path/to/code/

Note: If you have installed Flake8 on a particular version of Python (or on several versions), it may be best to
instead run python<version> -m flake8.

If you only want to see the instances of a specific warning or error, you can select that error like so:

1

flake8 Documentation, Release 3.7.6

flake8 --select E123,W503 path/to/code/

Alternatively, if you want to ignore only one specific warning or error:

flake8 --ignore E24,W504 path/to/code/

Please read our user guide for more information about how to use and configure Flake8.

2 Chapter 1. Quickstart

CHAPTER 2

FAQ and Glossary

2.1 Frequently Asked Questions

2.1.1 When is Flake8 released?

Flake8 is released as necessary. Sometimes there are specific goals and drives to get to a release. Usually, we release
as users report and fix bugs.

2.1.2 How can I help Flake8 release faster?

Look at the next milestone. If there’s work you can help us complete, that will help us get to the next milestone.
If there’s a show-stopping bug that needs to be released, let us know but please be kind. Flake8 is developed and
released entirely on volunteer time.

2.1.3 What is the next version of Flake8?

In general we try to use milestones to indicate this. If the last release on PyPI is 3.1.5 and you see a milestone for 3.2.0
in GitLab, there’s a good chance that 3.2.0 is the next release.

2.1.4 Why does Flake8 use ranges for its dependencies?

Flake8 uses ranges for mccabe, pyflakes, and pycodestyle because each of those projects tend to add new checks in
minor releases. It has been an implicit design goal of Flake8’s to make the list of error codes stable in its own minor
releases. That way if you install something from the 2.5 series today, you will not find new checks in the same series
in a month from now when you install it again.

Flake8’s dependencies tend to avoid new checks in patch versions which is why Flake8 expresses its dependencies
roughly as:

3

flake8 Documentation, Release 3.7.6

pycodestyle >= 2.0.0, < 2.1.0
pyflakes >= 0.8.0, != 1.2.0, != 1.2.1, != 1.2.2, < 1.3.0
mccabe >= 0.5.0, < 0.6.0

This allows those projects to release patch versions that fix bugs and for Flake8 users to consume those fixes.

2.1.5 Should I file an issue when a new version of a dependency is available?

No. The current Flake8 core team (of one person) is also a core developer of pycodestyle, pyflakes, and mccabe. They
are aware of these releases.

2.2 Glossary of Terms Used in Flake8 Documentation

check A piece of logic that corresponds to an error code. A check may be a style check (e.g., check the length of
a given line against the user configured maximum) or a lint check (e.g., checking for unused imports) or some
other check as defined by a plugin.

class

error class A larger grouping of related error codes. For example, W503 and W504 are two codes related to whites-
pace. W50 would be the most specific class of codes relating to whitespace. W would be the warning class that
subsumes all whitespace errors.

error

error code

violation The symbol associated with a specific check. For example, pycodestyle implements checks that look for
whitespace around binary operators and will either return an error code of W503 or W504.

formatter A plugin that augments the output of Flake8 when passed to flake8 --format.

mccabe The project Flake8 depends on to calculate the McCabe complexity of a unit of code (e.g., a function).
This uses the C class of :term‘error code‘s.

plugin A package that is typically installed from PyPI to augment the behaviour of Flake8 either through adding
one or more additional checks or providing additional formatters.

pycodestyle The project Flake8 depends on to provide style enforcement. pycodestyle implements checks for PEP
8. This uses the E and W classes of error codes.

pyflakes The project Flake8 depends on to lint files (check for unused imports, variables, etc.). This uses the F
class of error codes reported by Flake8.

warning Typically the W class of error codes from pycodestyle.

4 Chapter 2. FAQ and Glossary

https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

CHAPTER 3

User Guide

All users of Flake8 should read this portion of the documentation. This provides examples and documentation
around Flake8’s assortment of options and how to specify them on the command-line or in configuration files.

3.1 Using Flake8

Flake8 can be used in many ways. A few:

• invoked on the command-line

• invoked via Python

• called by Git or Mercurial on or around committing

This guide will cover all of these and the nuances for using Flake8.

Note: This portion of Flake8’s documentation does not cover installation. See the Installation section for how to
install Flake8.

3.1.1 Invoking Flake8

Once you have installed Flake8, you can begin using it. Most of the time, you will be able to generically invoke
Flake8 like so:

$ flake8 ...

Where you simply allow the shell running in your terminal to locate Flake8. In some cases, though, you may have
installed Flake8 for multiple versions of Python (e.g., Python 2.7 and Python 3.5) and you need to call a specific
version. In that case, you will have much better results using:

$ python2.7 -m flake8

Or

5

flake8 Documentation, Release 3.7.6

$ python3.5 -m flake8

Since that will tell the correct version of Python to run Flake8.

Note: Installing Flake8 once will not install it on both Python 2.7 and Python 3.5. It will only install it for the
version of Python that is running pip.

It is also possible to specify command-line options directly to Flake8:

$ flake8 --select E123

Or

$ python<version> -m flake8 --select E123

Note: This is the last time we will show both versions of an invocation. From now on, we’ll simply use flake8 and
assume that the user knows they can instead use python<version> -m flake8 instead.

It’s also possible to narrow what Flake8 will try to check by specifying exactly the paths and directories you want it
to check. Let’s assume that we have a directory with python files and sub-directories which have python files (and may
have more sub-directories) called my_project. Then if we only want errors from files found inside my_project
we can do:

$ flake8 my_project

And if we only want certain errors (e.g., E123) from files in that directory we can also do:

$ flake8 --select E123 my_project

If you want to explore more options that can be passed on the command-line, you can use the --help option:

$ flake8 --help

And you should see something like:

Usage: flake8 [options] file file ...

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-v, --verbose Print more information about what is happening in

flake8. This option is repeatable and will increase
verbosity each time it is repeated.

-q, --quiet Report only file names, or nothing. This option is
repeatable.

--count Print total number of errors and warnings to standard
error and set the exit code to 1 if total is not
empty.

--diff Report changes only within line number ranges in the
unified diff provided on standard in by the user.

--exclude=patterns Comma-separated list of files or directories to
exclude.(Default:
.svn,CVS,.bzr,.hg,.git,__pycache__,.tox)

--filename=patterns Only check for filenames matching the patterns in this
comma-separated list. (Default: *.py)

--format=format Format errors according to the chosen formatter.
--hang-closing Hang closing bracket instead of matching indentation

of opening bracket's line.
--ignore=errors Comma-separated list of errors and warnings to ignore

(continues on next page)

6 Chapter 3. User Guide

flake8 Documentation, Release 3.7.6

(continued from previous page)

(or skip). For example, ``--ignore=E4,E51,W234``.
(Default: E121,E123,E126,E226,E24,E704)

--extend-ignore=errors
Comma-separated list of errors and warnings to add to
the list of ignored ones. For example, ``--extend-
ignore=E4,E51,W234``.

--max-line-length=n Maximum allowed line length for the entirety of this
run. (Default: 79)

--select=errors Comma-separated list of errors and warnings to enable.
For example, ``--select=E4,E51,W234``. (Default:)

--disable-noqa Disable the effect of "# noqa". This will report
errors on lines with "# noqa" at the end.

--show-source Show the source generate each error or warning.
--statistics Count errors and warnings.
--enabled-extensions=ENABLED_EXTENSIONS

Enable plugins and extensions that are otherwise
disabled by default

--exit-zero Exit with status code "0" even if there are errors.
-j JOBS, --jobs=JOBS Number of subprocesses to use to run checks in

parallel. This is ignored on Windows. The default,
"auto", will auto-detect the number of processors
available to use. (Default: auto)

--output-file=OUTPUT_FILE
Redirect report to a file.

--tee Write to stdout and output-file.
--append-config=APPEND_CONFIG

Provide extra config files to parse in addition to the
files found by Flake8 by default. These files are the
last ones read and so they take the highest precedence
when multiple files provide the same option.

--config=CONFIG Path to the config file that will be the authoritative
config source. This will cause Flake8 to ignore all
other configuration files.

--isolated Ignore all configuration files.
--builtins=BUILTINS define more built-ins, comma separated
--doctests check syntax of the doctests
--include-in-doctest=INCLUDE_IN_DOCTEST

Run doctests only on these files
--exclude-from-doctest=EXCLUDE_FROM_DOCTEST

Skip these files when running doctests

Installed plugins: pyflakes: 1.0.0, pep8: 1.7.0

3.1.2 Configuring Flake8

Once you have learned how to invoke Flake8, you will soon want to learn how to configure it so you do not have to
specify the same options every time you use it.

This section will show you how to make

$ flake8

Remember that you want to specify certain options without writing

$ flake8 --select E123,W456 --enable-extensions H111

3.1. Using Flake8 7

flake8 Documentation, Release 3.7.6

Configuration Locations

Flake8 supports storing its configuration in the following places:

• Your top-level user directory

• In your project in one of setup.cfg, tox.ini, or .flake8.

“User” Configuration

Flake8 allows a user to use “global” configuration file to store preferences. The user configuration file is expected
to be stored somewhere in the user’s “home” directory.

• On Windows the “home” directory will be something like C:\\Users\sigmavirus24, a.k.a, ~\.

• On Linux and other Unix like systems (including OS X) we will look in ~/.

Note that Flake8 looks for ~\.flake8 on Windows and ~/.config/flake8 on Linux and other Unix systems.

User configuration files use the same syntax as Project Configuration files. Keep reading to see that syntax.

Project Configuration

Flake8 is written with the understanding that people organize projects into sub-directories. Let’s take for example
Flake8’s own project structure

flake8
docs

build
source

_static
_templates
dev
internal
user

flake8
formatting
main
options
plugins

tests
fixtures

config_files
integration
unit

In the top-level flake8 directory (which contains docs, flake8, and tests) there’s also tox.ini and setup.
cfg files. In our case, we keep our Flake8 configuration in tox.ini. Regardless of whether you keep your config
in .flake8, setup.cfg, or tox.ini we expect you to use INI to configure Flake8 (since each of these files
already uses INI as a format). This means that any Flake8 configuration you wish to set needs to be in the flake8
section, which means it needs to start like so:

[flake8]

Each command-line option that you want to specify in your config file can be named in either of two ways:

1. Using underscores (_) instead of hyphens (-)

8 Chapter 3. User Guide

flake8 Documentation, Release 3.7.6

2. Simply using hyphens (without the leading hyphens)

Note: Not every Flake8 command-line option can be specified in the configuration file. See our list of options to
determine which options will be parsed from the configuration files.

Let’s actually look at Flake8’s own configuration section:

[flake8]
ignore = D203
exclude = .git,__pycache__,docs/source/conf.py,old,build,dist
max-complexity = 10

This is equivalent to:

$ flake8 --ignore D203 --exclude .git,__pycache__,docs/source/conf.py,old,build,dist --max-complexity 10

In our case, if we wanted to, we could also do

[flake8]
ignore = D203
exclude =

.git,
__pycache__,
docs/source/conf.py,
old,
build,
dist

max-complexity = 10

This would allow us to add comments for why we’re excluding items, e.g.,

[flake8]
ignore = D203
exclude =

No need to traverse our git directory
.git,
There's no value in checking cache directories
__pycache__,
The conf file is mostly autogenerated, ignore it
docs/source/conf.py,
The old directory contains Flake8 2.0
old,
This contains our built documentation
build,
This contains builds of flake8 that we don't want to check
dist

max-complexity = 10

Note: If you’re using Python 2, you will notice that we download the configparser backport from PyPI. That
backport enables us to support this behaviour on all supported versions of Python.

Please do not open issues about this dependency to Flake8.

Note: You can also specify --max-complexity as max_complexity = 10.

3.1. Using Flake8 9

https://docs.python.org/3/library/configparser.html#module-configparser

flake8 Documentation, Release 3.7.6

This is also useful if you have a long list of error codes to ignore. Let’s look at a portion of a project’s Flake8
configuration in their tox.ini:

[flake8]
it's not a bug that we aren't using all of hacking, ignore:
F812: list comprehension redefines ...
H101: Use TODO(NAME)
H202: assertRaises Exception too broad
H233: Python 3.x incompatible use of print operator
H301: one import per line
H306: imports not in alphabetical order (time, os)
H401: docstring should not start with a space
H403: multi line docstrings should end on a new line
H404: multi line docstring should start without a leading new line
H405: multi line docstring summary not separated with an empty line
H501: Do not use self.__dict__ for string formatting
ignore = F812,H101,H202,H233,H301,H306,H401,H403,H404,H405,H501

They use the comments to describe the check but they could also write this as:

[flake8]
it's not a bug that we aren't using all of hacking
ignore =

F812: list comprehension redefines ...
F812,
H101: Use TODO(NAME)
H101,
H202: assertRaises Exception too broad
H202,
H233: Python 3.x incompatible use of print operator
H233,
H301: one import per line
H301,
H306: imports not in alphabetical order (time, os)
H306,
H401: docstring should not start with a space
H401,
H403: multi line docstrings should end on a new line
H403,
H404: multi line docstring should start without a leading new line
H404,
H405: multi line docstring summary not separated with an empty line
H405,
H501: Do not use self.__dict__ for string formatting
H501

Or they could use each comment to describe why they’ve ignored the check. Flake8 knows how to parse these lists
and will appropriately handle these situations.

Using Local Plugins

New in version 3.5.0.

Flake8 allows users to write plugins that live locally in a project. These plugins do not need to use setuptools or
any of the other overhead associated with plugins distributed on PyPI. To use these plugins, users must specify them
in their configuration file (i.e., .flake8, setup.cfg, or tox.ini). This must be configured in a separate INI
section named flake8:local-plugins.

10 Chapter 3. User Guide

flake8 Documentation, Release 3.7.6

Users may configure plugins that check source code, i.e., extension plugins, and plugins that report errors, i.e.,
report plugins.

An example configuration might look like:

[flake8:local-plugins]
extension =

MC1 = project.flake8.checkers:MyChecker1
MC2 = project.flake8.checkers:MyChecker2

report =
MR1 = project.flake8.reporters:MyReporter1
MR2 = project.flake8.reporters:MyReporter2

Flake8 will also, however, allow for commas to separate the plugins for example:

[flake8:local-plugins]
extension =

MC1 = project.flake8.checkers:MyChecker1,
MC2 = project.flake8.checkers:MyChecker2

report =
MR1 = project.flake8.reporters:MyReporter1,
MR2 = project.flake8.reporters:MyReporter2

These configurations will allow you to select your own custom reporter plugin that you’ve designed or will utilize your
new check classes.

If your package is installed in the same virtualenv that Flake8 will run from, and your local plugins are part of that
package, you’re all set; Flake8 will be able to import your local plugins. However, if you are working on a project
that isn’t set up as an installable package, or Flake8 doesn’t run from the same virtualenv your code runs in, you
may need to tell Flake8 where to import your local plugins from. You can do this via the paths option in the
local-plugins section of your config:

[flake8:local-plugins]
extension =

MC1 = myflake8plugin:MyChecker1
paths =

./path/to

Relative paths will be interpreted relative to the config file. Multiple paths can be listed (comma separated just like
exclude) as needed. If your local plugins have any dependencies, it’s up to you to ensure they are installed in
whatever Python environment Flake8 runs in.

Note: These plugins otherwise follow the same guidelines as regular plugins.

3.1.3 Full Listing of Options and Their Descriptions

Index of Options

• flake8 --version

• flake8 --help

• flake8 --verbose

• flake8 --quiet

• flake8 --count

3.1. Using Flake8 11

flake8 Documentation, Release 3.7.6

• flake8 --diff

• flake8 --exclude

• flake8 --filename

• flake8 --stdin-display-name

• flake8 --format

• flake8 --hang-closing

• flake8 --ignore

• flake8 --extend-ignore

• flake8 --per-file-ignores

• flake8 --max-line-length

• flake8 --select

• flake8 --disable-noqa

• flake8 --show-source

• flake8 --statistics

• flake8 --enable-extensions

• flake8 --exit-zero

• flake8 --install-hook

• flake8 --jobs

• flake8 --output-file

• flake8 --tee

• flake8 --append-config

• flake8 --config

• flake8 --isolated

• flake8 --builtins

• flake8 --doctests

• flake8 --include-in-doctest

• flake8 --exclude-from-doctest

• flake8 --benchmark

• flake8 --bug-report

• flake8 --max-complexity

Options and their Descriptions

--version
Go back to index

Show Flake8’s version as well as the versions of all plugins installed.

Command-line usage:

12 Chapter 3. User Guide

flake8 Documentation, Release 3.7.6

$ flake8 --version

This can not be specified in config files.

-h, --help
Go back to index

Show a description of how to use Flake8 and its options.

Command-line usage:

$ flake8 --help
$ flake8 -h

This can not be specified in config files.

-v, --verbose
Go back to index

Increase the verbosity of Flake8’s output. Each time you specify it, it will print more and more information.

Command-line example:

$ flake8 -vv

This can be specified in config files.

Example config file usage:

verbose = 2

-q, --quiet
Go back to index

Decrease the verbosity of Flake8’s output. Each time you specify it, it will print less and less information.

Command-line example:

$ flake8 -q

This can be specified in config files.

Example config file usage:

quiet = 1

--count
Go back to index

Print the total number of errors.

Command-line example:

$ flake8 --count dir/

This can be specified in config files.

Example config file usage:

count = True

3.1. Using Flake8 13

flake8 Documentation, Release 3.7.6

--diff
Go back to index

Use the unified diff provided on standard in to only check the modified files and report errors included in the
diff.

Command-line example:

$ git diff -u | flake8 --diff

This can not be specified in config files.

--exclude=<patterns>
Go back to index

Provide a comma-separated list of glob patterns to exclude from checks.

This defaults to: .svn,CVS,.bzr,.hg,.git,__pycache__,.tox

Example patterns:

• *.pyc will match any file that ends with .pyc

• __pycache__ will match any path that has __pycache__ in it

• lib/python will look expand that using os.path.abspath() and look for matching paths

Command-line example:

$ flake8 --exclude=*.pyc dir/

This can be specified in config files.

Example config file usage:

exclude =
.tox,
__pycache__

--filename=<patterns>
Go back to index

Provide a comma-separate list of glob patterns to include for checks.

This defaults to: *.py

Example patterns:

• *.py will match any file that ends with .py

• __pycache__ will match any path that has __pycache__ in it

• lib/python will look expand that using os.path.abspath() and look for matching paths

Command-line example:

$ flake8 --filename=*.py dir/

This can be specified in config files.

Example config file usage:

14 Chapter 3. User Guide

https://docs.python.org/3/library/os.path.html#os.path.abspath
https://docs.python.org/3/library/os.path.html#os.path.abspath

flake8 Documentation, Release 3.7.6

filename =
example.py,
another-example*.py

--stdin-display-name=<display_name>
Go back to index

Provide the name to use to report warnings and errors from code on stdin.

Instead of reporting an error as something like:

stdin:82:73 E501 line too long

You can specify this option to have it report whatever value you want instead of stdin.

This defaults to: stdin

Command-line example:

$ cat file.py | flake8 --stdin-display-name=file.py -

This can not be specified in config files.

--format=<format>
Go back to index

Select the formatter used to display errors to the user.

This defaults to: default

By default, there are two formatters available:

• default

• pylint

Other formatters can be installed. Refer to their documentation for the name to use to select them. Further, users
can specify their own format string. The variables available are:

• code

• col

• path

• row

• text

The default formatter has a format string of:

'%(path)s:%(row)d:%(col)d: %(code)s %(text)s'

Command-line example:

$ flake8 --format=pylint dir/
$ flake8 --format='%(path)s::%(row)d,%(col)d::%(code)s::%(text)s' dir/

This can be specified in config files.

Example config file usage:

3.1. Using Flake8 15

flake8 Documentation, Release 3.7.6

format=pylint
format=%(path)s::%(row)d,%(col)d::%(code)s::%(text)s

--hang-closing
Go back to index

Toggle whether pycodestyle should enforce matching the indentation of the opening bracket’s line. When you
specify this, it will prefer that you hang the closing bracket rather than match the indentation.

Command-line example:

$ flake8 --hang-closing dir/

This can be specified in config files.

Example config file usage:

hang_closing = True
hang-closing = True

--ignore=<errors>
Go back to index

Specify a list of codes to ignore. The list is expected to be comma-separated, and does not need to specify
an error code exactly. Since Flake8 3.0, this can be combined with --select. See --select for more
information.

For example, if you wish to only ignore W234, then you can specify that. But if you want to ignore all codes
that start with W23 you need only specify W23 to ignore them. This also works for W2 and W (for example).

This defaults to: E121,E123,E126,E226,E24,E704,W503,W504

Command-line example:

$ flake8 --ignore=E121,E123 dir/
$ flake8 --ignore=E24,E704 dir/

This can be specified in config files.

Example config file usage:

ignore =
E121,
E123

ignore = E121,E123

--extend-ignore=<errors>
Go back to index

New in version 3.6.0.

Specify a list of codes to add to the list of ignored ones. Similar considerations as in --ignore apply here
with regard to the value.

The difference to the --ignore option is, that this option can be used to selectively add individual codes
without overriding the default list entirely.

Command-line example:

$ flake8 --extend-ignore=E4,E51,W234 dir/

16 Chapter 3. User Guide

flake8 Documentation, Release 3.7.6

This can be specified in config files.

Example config file usage:

extend-ignore =
E4,
E51,
W234

extend-ignore = E4,E51,W234

--per-file-ignores=<filename:errors>[<filename:errors>]
Go back to index

New in version 3.7.0.

Specify a list of mappings of files and the codes that should be ignored for the entirety of the file. This allows
for a project to have a default list of violations that should be ignored as well as file-specific violations for files
that have not been made compliant with the project rules.

This option supports syntax similar to --exclude such that glob patterns will also work here.

This can be combined with both --ignore and --extend-ignore to achieve a full flexibility of style
options.

Command-line usage:

$ flake8 --per-file-ignores='project/__init__.py:F401 setup.py:E121'
$ flake8 --per-file-ignores='project/*/__init__.py:F401 setup.py:E121'

This can be specified in config files.

per-file-ignores =
project/__init__.py:F401
setup.py:E121
other_project/*:W9

--max-line-length=<n>
Go back to index

Set the maximum length that any line (with some exceptions) may be.

Exceptions include lines that are either strings or comments which are entirely URLs. For example:

https://some-super-long-domain-name.com/with/some/very/long/path

url = (
'http://...'

)

This defaults to: 79

Command-line example:

$ flake8 --max-line-length 99 dir/

This can be specified in config files.

Example config file usage:

max-line-length = 79

3.1. Using Flake8 17

flake8 Documentation, Release 3.7.6

--select=<errors>
Go back to index

Specify the list of error codes you wish Flake8 to report. Similarly to --ignore. You can specify a portion
of an error code to get all that start with that string. For example, you can use E, E4, E43, and E431.

This defaults to: E,F,W,C

Command-line example:

$ flake8 --select=E431,E5,W,F dir/
$ flake8 --select=E,W dir/

This can also be combined with --ignore:

$ flake8 --select=E --ignore=E432 dir/

This will report all codes that start with E, but ignore E432 specifically. This is more flexibly than the Flake8
2.x and 1.x used to be.

This can be specified in config files.

Example config file usage:

select =
E431,
W,
F

--disable-noqa
Go back to index

Report all errors, even if it is on the same line as a # NOQA comment. # NOQA can be used to silence messages
on specific lines. Sometimes, users will want to see what errors are being silenced without editing the file. This
option allows you to see all the warnings, errors, etc. reported.

Command-line example:

$ flake8 --disable-noqa dir/

This can be specified in config files.

Example config file usage:

disable_noqa = True
disable-noqa = True

--show-source
Go back to index

Print the source code generating the error/warning in question.

Command-line example:

$ flake8 --show-source dir/

This can be specified in config files.

Example config file usage:

18 Chapter 3. User Guide

flake8 Documentation, Release 3.7.6

show_source = True
show-source = True

--statistics
Go back to index

Count the number of occurrences of each error/warning code and print a report.

Command-line example:

$ flake8 --statistics

This can be specified in config files.

Example config file usage:

statistics = True

--enable-extensions=<errors>
Go back to index

Enable off-by-default extensions.

Plugins to Flake8 have the option of registering themselves as off-by-default. These plugins effectively add
themselves to the default ignore list.

Command-line example:

$ flake8 --enable-extensions=H111 dir/

This can be specified in config files.

Example config file usage:

enable-extensions =
H111,
G123

enable_extensions =
H111,
G123

--exit-zero
Go back to index

Force Flake8 to use the exit status code 0 even if there are errors.

By default Flake8 will exit with a non-zero integer if there are errors.

Command-line example:

$ flake8 --exit-zero dir/

This can not be specified in config files.

--install-hook=VERSION_CONTROL_SYSTEM
Go back to index

Install a hook for your version control system that is executed before or during commit.

The available options are:

• git

3.1. Using Flake8 19

flake8 Documentation, Release 3.7.6

• mercurial

Command-line usage:

$ flake8 --install-hook=git
$ flake8 --install-hook=mercurial

This can not be specified in config files.

--jobs=<n>
Go back to index

Specify the number of subprocesses that Flake8 will use to run checks in parallel.

Note: This option is ignored on Windows because multiprocessing does not support Windows across all
supported versions of Python.

This defaults to: auto

The default behaviour will use the number of CPUs on your machine as reported by multiprocessing.
cpu_count().

Command-line example:

$ flake8 --jobs=8 dir/

This can be specified in config files.

Example config file usage:

jobs = 8

--output-file=<path>
Go back to index

Redirect all output to the specified file.

Command-line example:

$ flake8 --output-file=output.txt dir/
$ flake8 -vv --output-file=output.txt dir/

This can be specified in config files.

Example config file usage:

output-file = output.txt
output_file = output.txt

--tee
Go back to index

Also print output to stdout if output-file has been configured.

Command-line example:

$ flake8 --tee --output-file=output.txt dir/

20 Chapter 3. User Guide

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.cpu_count
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.cpu_count

flake8 Documentation, Release 3.7.6

This can be specified in config files.

Example config file usage:

output-file = output.txt
tee = True

--append-config=<config>
Go back to index

New in version 3.6.0.

Provide extra config files to parse in after and in addition to the files that Flake8 found on its own. Since these
files are the last ones read into the Configuration Parser, so it has the highest precedence if it provides an option
specified in another config file.

Command-line example:

$ flake8 --append-config=my-extra-config.ini dir/

This can not be specified in config files.

--config=<config>
Go back to index

Provide a path to a config file that will be the only config file read and used. This will cause Flake8 to ignore
all other config files that exist.

Command-line example:

$ flake8 --config=my-only-config.ini dir/

This can not be specified in config files.

--isolated
Go back to index

Ignore any config files and use Flake8 as if there were no config files found.

Command-line example:

$ flake8 --isolated dir/

This can not be specified in config files.

--builtins=<builtins>
Go back to index

Provide a custom list of builtin functions, objects, names, etc.

This allows you to let pyflakes know about builtins that it may not immediately recognize so it does not report
warnings for using an undefined name.

This is registered by the default PyFlakes plugin.

Command-line example:

$ flake8 --builtins=_,_LE,_LW dir/

This can be specified in config files.

Example config file usage:

3.1. Using Flake8 21

flake8 Documentation, Release 3.7.6

builtins =
_,
_LE,
_LW

--doctests
Go back to index

Enable PyFlakes syntax checking of doctests in docstrings.

This is registered by the default PyFlakes plugin.

Command-line example:

$ flake8 --doctests dir/

This can be specified in config files.

Example config file usage:

doctests = True

--include-in-doctest=<paths>
Go back to index

Specify which files are checked by PyFlakes for doctest syntax.

This is registered by the default PyFlakes plugin.

Command-line example:

$ flake8 --include-in-doctest=dir/subdir/file.py,dir/other/file.py dir/

This can be specified in config files.

Example config file usage:

include-in-doctest =
dir/subdir/file.py,
dir/other/file.py

include_in_doctest =
dir/subdir/file.py,
dir/other/file.py

--exclude-from-doctest=<paths>
Go back to index

Specify which files are not to be checked by PyFlakes for doctest syntax.

This is registered by the default PyFlakes plugin.

Command-line example:

$ flake8 --exclude-in-doctest=dir/subdir/file.py,dir/other/file.py dir/

This can be specified in config files.

Example config file usage:

22 Chapter 3. User Guide

flake8 Documentation, Release 3.7.6

exclude-in-doctest =
dir/subdir/file.py,
dir/other/file.py

exclude_in_doctest =
dir/subdir/file.py,
dir/other/file.py

--benchmark
Go back to index

Collect and print benchmarks for this run of Flake8. This aggregates the total number of:

• tokens

• physical lines

• logical lines

• files

and the number of elapsed seconds.

Command-line usage:

$ flake8 --benchmark dir/

This can not be specified in config files.

--bug-report
Go back to index

Generate information necessary to file a complete bug report for Flake8. This will pretty-print a JSON blob that
should be copied and pasted into a bug report for Flake8.

Command-line usage:

$ flake8 --bug-report

The output should look vaguely like:

{
"dependencies": [

{
"dependency": "setuptools",
"version": "25.1.1"

}
],
"platform": {

"python_implementation": "CPython",
"python_version": "2.7.12",
"system": "Darwin"

},
"plugins": [

{
"plugin": "mccabe",
"version": "0.5.1"

},
{

"plugin": "pycodestyle",
"version": "2.0.0"

(continues on next page)

3.1. Using Flake8 23

flake8 Documentation, Release 3.7.6

(continued from previous page)

},
{

"plugin": "pyflakes",
"version": "1.2.3"

}
],
"version": "3.1.0.dev0"

}

This can not be specified in config files.

--max-complexity=<n>
Go back to index

Set the maximum allowed McCabe complexity value for a block of code.

This option is provided by the mccabe dependency’s Flake8 plugin.

Command-line usage:

$ flake8 --max-complexity 15 dir/

This can be specified in config files.

Example config file usage:

max-complexity = 15

3.1.4 Error / Violation Codes

Flake8 and its plugins assign a code to each message that we refer to as a error code (or violation). Most plugins will
list their error codes in their documentation or README.

Flake8 installs pycodestyle, pyflakes, and mccabe by default and generates its own error codes for
pyflakes:

Code Example Message
F401 module imported but unused
F402 import module from line N shadowed by loop variable
F403 ‘from module import *’ used; unable to detect undefined names
F404 future import(s) name after other statements
F405 name may be undefined, or defined from star imports: module
F406 ‘from module import *’ only allowed at module level
F407 an undefined __future__ feature name was imported

F601 dictionary key name repeated with different values
F602 dictionary key variable name repeated with different values
F621 too many expressions in an assignment with star-unpacking
F622 two or more starred expressions in an assignment (a, *b, *c = d)
F631 assertion test is a tuple, which are always True
F632 use ==/!= to compare str, bytes, and int literals
F633 assertion test is a tuple, which are always True

Continued on next page

24 Chapter 3. User Guide

flake8 Documentation, Release 3.7.6

Table 1 – continued from previous page
Code Example Message
F701 a break statement outside of a while or for loop
F702 a continue statement outside of a while or for loop
F703 a continue statement in a finally block in a loop
F704 a yield or yield from statement outside of a function
F705 a return statement with arguments inside a generator
F706 a return statement outside of a function/method
F707 an except: block as not the last exception handler
F721 syntax error in doctest
F722 syntax error in forward annotation
F723 syntax error in type comment

F811 redefinition of unused name from line N
F812 list comprehension redefines name from line N
F821 undefined name name
F822 undefined name name in __all__
F823 local variable name . . . referenced before assignment
F831 duplicate argument name in function definition
F841 local variable name is assigned to but never used

F901 raise NotImplemented should be raise NotImplementedError

Note that some of these entries behave differently on Python 2 and Python 3, for example F812 is specific to Python 2
only.

We also report one extra error: E999. We report E999 when we fail to compile a file into an Abstract Syntax Tree for
the plugins that require it.

mccabe only ever reports one violation - C901 based on the complexity value provided by the user.

Users should also reference pycodestyle’s list of error codes.

3.1.5 Selecting and Ignoring Violations

It is possible to select and ignore certain violations reported by Flake8 and the plugins we’ve installed. It’s also
possible as of Flake8 3.0 to combine usage of flake8 --select and flake8 --ignore. This chapter of
the User Guide aims to educate about how Flake8 will report errors based on different inputs.

Ignoring Violations with Flake8

By default, Flake8 has a list of error codes that it ignores. The list used by a version of Flake8 may be different
than the list used by a different version. To see the default list, flake8 --help will show the output with the
current default list.

Extending the Default Ignore List

If we want to extend the default list of ignored error codes, we can use flake8 --extend-ignore to specify a
comma-separated list of codes for a specific run on the command line, e.g.,

$ flake8 --extend-ignore=E1,E23 path/to/files/ path/to/more/files

3.1. Using Flake8 25

https://pycodestyle.readthedocs.io/en/latest/intro.html#error-codes

flake8 Documentation, Release 3.7.6

This tells Flake8 to ignore any error codes starting with E1 and E23, in addition the default ignore list. To view the
default error code ignore list, run flake8 --help and refer to the help text for flake8 --ignore.

Overriding the Default Ignore List

If we want to completely override the default list of ignored error codes, we can use flake8 --ignore to specify
a comma-separated list of codes for a specific run on the command-line, e.g.,

$ flake8 --ignore=E1,E23,W503 path/to/files/ path/to/more/files/

This tells Flake8 to only ignore error codes starting with E1, E23, or W503 while it is running.

Note: The documentation for flake8 --ignore shows examples for how to change the ignore list in the config-
uration file. See also Configuring Flake8 as well for details about how to use configuration files.

In-line Ignoring Errors

In some cases, we might not want to ignore an error code (or class of error codes) for the entirety of our project.
Instead, we might want to ignore the specific error code on a specific line. Let’s take for example a line like

example = lambda: 'example'

Sometimes we genuinely need something this simple. We could instead define a function like we normally would.
Note, in some contexts this distracts from what is actually happening. In those cases, we can also do:

example = lambda: 'example' # noqa: E731

This will only ignore the error from pycodestyle that checks for lambda assignments and generates an E731. If there
are other errors on the line then those will be reported. # noqa is case-insensitive, without the colon the part after #
noqa would be ignored.

Note: If we ever want to disable Flake8 respecting # noqa comments, we can refer to flake8
--disable-noqa.

If we instead had more than one error that we wished to ignore, we could list all of the errors with commas separating
them:

noqa: E731,E123

Finally, if we have a particularly bad line of code, we can ignore every error using simply # noqa with nothing after
it.

Ignoring Entire Files

Imagine a situation where we are adding Flake8 to a codebase. Let’s further imagine that with the exception of a
few particularly bad files, we can add Flake8 easily and move on with our lives. There are two ways to ignore the
file:

1. By explicitly adding it to our list of excluded paths (see: flake8 --exclude)

2. By adding # flake8: noqa to the file

26 Chapter 3. User Guide

flake8 Documentation, Release 3.7.6

The former is the recommended way of ignoring entire files. By using our exclude list, we can include it in our
configuration file and have one central place to find what files aren’t included in Flake8 checks. The latter has
the benefit that when we run Flake8 with flake8 --disable-noqa all of the errors in that file will show up
without having to modify our configuration. Both exist so we can choose which is better for us.

Selecting Violations with Flake8

Flake8 has a default list of violation classes that we use. This list is:

• C90

All C90 class violations are reported when the user specifies flake8 --max-complexity

• E

All E class violations are “errors” reported by pycodestyle

• F

All F class violations are reported by pyflakes

• W

All W class violations are “warnings” reported by pycodestyle

This list can be overridden by specifying flake8 --select. Just as specifying flake8 --ignore will change
the behaviour of Flake8, so will flake8 --select.

Let’s look through some examples using this sample code:

example.py
def foo():

print(
"Hello"

"World"
)

By default, if we run flake8 on this file we’ll get:

$ flake8 example.py

example.py:4:9: E131 continuation line unaligned for hanging indent

Now let’s select all E class violations:

$ flake8 --select E example.py

example.py:3:17: E126 continuation line over-indented for hanging indent
example.py:4:9: E131 continuation line unaligned for hanging indent
example.py:5:9: E121 continuation line under-indented for hanging indent

Suddenly we now have far more erors that are reported to us. Using --select alone will override the default
--ignore list. In these cases, the user is telling us that they want all E violations and so we ignore our list of
violations that we ignore by default.

We can also be highly specific. For example, we can do

$ flake8 --select E121 example.py

example.py:5:9: E121 continuation line under-indented for hanging indent

We can also specify lists of items to select both on the command-line and in our configuration files.

3.1. Using Flake8 27

flake8 Documentation, Release 3.7.6

$ flake8 --select E121,E131 example.py

example.py:4:9: E131 continuation line unaligned for hanging indent
example.py:5:9: E121 continuation line under-indented for hanging indent

Selecting and Ignoring Simultaneously For Fun and Profit

Prior to Flake8 3.0, all handling of flake8 --select and flake8 --ignore was delegated to pycodestyle.
Its handling of the options significantly differs from how Flake8 3.0 has been designed.

pycodestyle has always preferred --ignore over --select and will ignore --select if the user provides both.
Flake8 3.0 will now do its best to intuitively combine both options provided by the user. Let’s look at some examples
using:

example.py
import os

def foo():
var = 1
print(

"Hello"
"World"
)

If we run Flake8 with its default settings we get:

$ flake8 example.py

example.py:1:1: F401 'os' imported but unused
example.py:5:5: F841 local variable 'var' is assigned to but never used
example.py:8:9: E131 continuation line unaligned for hanging indent

Now let’s select all E and F violations including those in the default ignore list.

$ flake8 --select E,F example.py

example.py:1:1: F401 'os' imported but unused
example.py:5:5: F841 local variable 'var' is assigned to but never used
example.py:7:17: E126 continuation line over-indented for hanging indent
example.py:8:9: E131 continuation line unaligned for hanging indent
example.py:9:9: E121 continuation line under-indented for hanging indent

Now let’s selectively ignore some of these while selecting the rest:

$ flake8 --select E,F --ignore F401,E121 example.py

example.py:5:5: F841 local variable 'var' is assigned to but never used
example.py:7:17: E126 continuation line over-indented for hanging indent
example.py:8:9: E131 continuation line unaligned for hanging indent

Via this example, we can see that the most specific user-specified rule will win. So in the above, we had very vague
select rules and two very specific ignore rules. Let’s look at a different example:

$ flake8 --select F401,E131 --ignore E,F example.py

example.py:1:1: F401 'os' imported but unused
example.py:8:9: E131 continuation line unaligned for hanging indent

28 Chapter 3. User Guide

flake8 Documentation, Release 3.7.6

In this case, we see that since our selected violation codes were more specific those were reported.

3.1.6 Using Plugins For Fun and Profit

Flake8 is useful on its own but a lot of Flake8’s popularity is due to its extensibility. Our community has developed
plugins that augment Flake8’s behaviour. Most of these plugins are uploaded to PyPI. The developers of these
plugins often have some style they wish to enforce.

For example, flake8-docstrings adds a check for PEP 257 style conformance. Others attempt to enforce consistency,
like flake8-future.

Note: The accuracy or reliability of these plugins may vary wildly from plugin to plugin and not all plugins are
guaranteed to work with Flake8 3.0.

To install a third-party plugin, make sure that you know which version of Python (or pip) you used to install Flake8.
You can then use the most appropriate of:

$ pip install <plugin-name>
$ pip3 install <plugin-name>
$ python -m pip install <plugin-name>
$ python2.7 -m pip install <plugin-name>
$ python3 -m pip install <plugin-name>
$ python3.4 -m pip install <plugin-name>
$ python3.5 -m pip install <plugin-name>

To install the plugin, where <plugin-name> is the package name on PyPI. To verify installation use:

$ flake8 --version
$ python<version> -m flake8 --version

To see the plugin’s name and version in the output.

See also:

How to Invoke Flake8

After installation, most plugins immediately start reporting errors. Check the plugin’s documentation for which error
codes it returns and if it disables any by default.

Note: You can use both flake8 --select and flake8 --ignore with plugins.

Some plugins register new options, so be sure to check flake8 --help for new flags and documentation. These
plugins may also allow these flags to be specified in your configuration file. Hopefully, the plugin authors have
documented this for you.

See also:

Configuring Flake8

3.1.7 Using Version Control Hooks

Usage with the pre-commit git hooks framework

Flake8 can be included as a hook for pre-commit. The easiest way to get started is to add this configuration to your
.pre-commit-config.yaml:

3.1. Using Flake8 29

https://pypi.org/
https://pypi.org/project/flake8-docstrings/
https://www.python.org/dev/peps/pep-0257
https://pypi.org/project/flake8-future/
https://pypi.org/
https://pre-commit.com/

flake8 Documentation, Release 3.7.6

- repo: https://gitlab.com/pycqa/flake8
rev: '' # pick a git hash / tag to point to
hooks:
- id: flake8

See the pre-commit docs for how to customize this configuration.

Checked-in python files will be passed as positional arguments. flake8 will always lint explicitly passed argu-
ments (flake8 --exclude has no effect). Instead use pre-commit’s exclude: ... regex to exclude files.
pre-commit won’t ever pass untracked files to flake8 so excluding .git / .tox / etc. is unnecesary.

- id: flake8
exclude: ^testing/(data|examples)/

pre-commit creates an isolated environment for hooks. To use flake8 plugins, use the
additional_dependencies setting.

- id: flake8
additional_dependencies: [flake8-docstrings]

Built-in Hook Integration

Note: It is strongly suggested to use Flake8 via pre-commit over the built-in hook mechanisms. pre-commit
smooths out many of the rough edges of git and is much more battle-tested than the Flake8 hook impementation.

Flake8 can be integrated into your development workflow in many ways. A default installation of Flake8
can install pre-commit hooks for both Git and Mercurial. To install a built-in hook, you can use the flake8
--install-hook command-line option. For example, you can install a git pre-commit hook by running:

$ flake8 --install-hook git

This will install the pre-commit hook into .git/hooks/. Alternatively, you can install the mercurial commit hook
by running

$ flake8 --install-hook mercurial

Preventing Commits

By default, Flake8 does not prevent you from creating a commit with these hooks. Both hooks can be configured to
be strict easily.

Both our Git and Mercurial hooks check for the presence of flake8.strict in each VCS’ config. For example,
you might configure this like so:

$ git config --bool flake8.strict true
$ hg config flake8.strict true

Checking All Modified Files Currently Tracked

Note: Mercurial does not have the concept of an index or “stage” as best as I understand.

30 Chapter 3. User Guide

https://pre-commit.com/#pre-commit-configyaml---hooks
https://pre-commit.com/
https://git-scm.com/
https://www.mercurial-scm.org/

flake8 Documentation, Release 3.7.6

Flake8 aims to make smart choices that keep things fast for users where possible. As a result, the Flake8 Git
pre-commit will default to only checking files that have been staged (i.e., added to the index). If, however, you are
keen to be lazy and not independenty add files to your git index, you can set flake8.lazy to true (similar to how
you would set flake8.strict above) and this will check all tracked files.

This is to support users who often find themselves doing things like:

$ git commit -a

Note: If you have files you have not yet added to the index, Flake8 will not see these and will not check them for
you. You must git-add them first.

3.1.8 Public Python API

Flake8 3.0.0 presently does not have a public, stable Python API.

When it does it will be located in flake8.api and that will be documented here.

Legacy API

When Flake8 broke its hard dependency on the tricky internals of pycodestyle, it lost the easy backwards compat-
ibility as well. To help existing users of that API we have flake8.api.legacy . This module includes a couple
classes (which are documented below) and a function.

The main usage that the developers of Flake8 observed was using the get_style_guide() function and then
calling check_files(). To a lesser extent, people also seemed to use the get_statistics() method on what
check_files returns. We then sought to preserve that API in this module.

Let’s look at an example piece of code together:

from flake8.api import legacy as flake8

style_guide = flake8.get_style_guide(ignore=['E24', 'W503'])
report = style_guide.check_files([...])
assert report.get_statistics('E') == [], 'Flake8 found violations'

This represents the basic universal usage of all existing Flake8 2.x integrations. Each example we found was obviously
slightly different, but this is kind of the gist, so let’s walk through this.

Everything that is backwards compatible for our API is in the flake8.api.legacy submodule. This is to indicate,
clearly, that the old API is being used.

We create a flake8.api.legacy.StyleGuide by calling flake8.api.legacy.
get_style_guide(). We can pass options to flake8.api.legacy.get_style_guide() that
correspond to the command-line options one might use. For example, we can pass ignore, select, exclude,
format, etc. Our legacy API, does not enforce legacy behaviour, so we can combine ignore and select like we
might on the command-line, e.g.,

style_guide = flake8.get_style_guide(
ignore=['E24', 'W5'],
select=['E', 'W', 'F'],
format='pylint',

)

3.1. Using Flake8 31

flake8 Documentation, Release 3.7.6

Once we have our flake8.api.legacy.StyleGuidewe can use the same methods that we used before, namely

StyleGuide.check_files(paths=None)
Run collected checks on the files provided.

This will check the files passed in and return a Report instance.

Parameters paths (list) – List of filenames (or paths) to check.

Returns Object that mimic’s Flake8 2.0’s Reporter class.

Return type flake8.api.legacy.Report

StyleGuide.excluded(filename, parent=None)
Determine if a file is excluded.

Parameters

• filename (str) – Path to the file to check if it is excluded.

• parent (str) – Name of the parent directory containing the file.

Returns True if the filename is excluded, False otherwise.

Return type bool

StyleGuide.init_report(reporter=None)
Set up a formatter for this run of Flake8.

StyleGuide.input_file(filename, lines=None, expected=None, line_offset=0)
Run collected checks on a single file.

This will check the file passed in and return a Report instance.

Parameters

• filename (str) – The path to the file to check.

• lines (list) – Ignored since Flake8 3.0.

• expected – Ignored since Flake8 3.0.

• line_offset (int) – Ignored since Flake8 3.0.

Returns Object that mimic’s Flake8 2.0’s Reporter class.

Return type flake8.api.legacy.Report

Warning: These are not perfectly backwards compatible. Not all arguments are respsected, and some of the types
necessary for something to work have changed.

Most people, we observed, were using check_files(). You can use this to specify a list of filenames or directories
to check. In Flake8 3.0, however, we return a different object that has similar methods. We return a flake8.api.
legacy.Report which has the method

Report.get_statistics(violation)
Get the list of occurrences of a violation.

Returns List of occurrences of a violation formatted as: {Count} {Error Code} {Message}, e.g., 8
E531 Some error message about the error

Return type list

32 Chapter 3. User Guide

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

flake8 Documentation, Release 3.7.6

Most usage of this method that we noted was as documented above. Keep in mind, however, that it provides a list of
strings and not anything more maleable.

Autogenerated Legacy Documentation

Module containing shims around Flake8 2.x behaviour.

Previously, users would import get_style_guide() from flake8.engine. In 3.0 we no longer have an
“engine” module but we maintain the API from it.

flake8.api.legacy.get_style_guide(**kwargs)
Provision a StyleGuide for use.

Parameters **kwargs – Keyword arguments that provide some options for the StyleGuide.

Returns An initialized StyleGuide

Return type StyleGuide

class flake8.api.legacy.StyleGuide(application)
Public facing object that mimic’s Flake8 2.0’s StyleGuide.

Note: There are important changes in how this object behaves compared to the StyleGuide object provided in
Flake8 2.x.

Warning: This object should not be instantiated directly by users.

Changed in version 3.0.0.

options
Return application’s options.

An instance of optparse.Values containing parsed options.

paths
Return the extra arguments passed as paths.

class flake8.api.legacy.Report(application)
Public facing object that mimic’s Flake8 2.0’s API.

Note: There are important changes in how this object behaves compared to the object provided in Flake8 2.x.

Warning: This should not be instantiated by users.

Changed in version 3.0.0.

total_errors
Return the total number of errors.

3.1. Using Flake8 33

flake8 Documentation, Release 3.7.6

3.2 flake8

3.2.1 SYNOPSIS

flake8 [options] [<path> <path> ...]

flake8 --help

3.2.2 DESCRIPTION

flake8 is a command-line utility for enforcing style consistency across Python projects. By default it includes lint
checks provided by the PyFlakes project, PEP-0008 inspired style checks provided by the PyCodeStyle project, and
McCabe complexity checking provided by the McCabe project. It will also run third-party extensions if they are found
and installed.

3.2.3 OPTIONS

It is important to note that third-party extensions may add options which are not represented here. To see all options
available in your installation, run:

flake8 --help

All options available as of Flake8 3.1.0:

--version show program's version number and exit
-h, --help show this help message and exit
-v, --verbose Print more information about what is happening in

flake8. This option is repeatable and will increase
verbosity each time it is repeated.

-q, --quiet Report only file names, or nothing. This option is
repeatable.

--count Print total number of errors and warnings to standard
error and set the exit code to 1 if total is not
empty.

--diff Report changes only within line number ranges in the
unified diff provided on standard in by the user.

--exclude=patterns Comma-separated list of files or directories to
exclude. (Default:
.svn,CVS,.bzr,.hg,.git,__pycache__,.tox,.eggs,*.egg)

--filename=patterns Only check for filenames matching the patterns in this
comma-separated list. (Default: *.py)

--stdin-display-name=STDIN_DISPLAY_NAME
The name used when reporting errors from code passed
via stdin. This is useful for editors piping the file
contents to flake8. (Default: stdin)

--format=format Format errors according to the chosen formatter.
--hang-closing Hang closing bracket instead of matching indentation

of opening bracket's line.
--ignore=errors Comma-separated list of errors and warnings to ignore

(or skip). For example, ``--ignore=E4,E51,W234``.
(Default: E121,E123,E126,E226,E24,E704,W503,W504)

--max-line-length=n Maximum allowed line length for the entirety of this
run. (Default: 79)

(continues on next page)

34 Chapter 3. User Guide

flake8 Documentation, Release 3.7.6

(continued from previous page)

--select=errors Comma-separated list of errors and warnings to enable.
For example, ``--select=E4,E51,W234``. (Default:
E,F,W,C90)

--disable-noqa Disable the effect of "# noqa". This will report
errors on lines with "# noqa" at the end.

--show-source Show the source generate each error or warning.
--statistics Count errors and warnings.
--enable-extensions=ENABLE_EXTENSIONS

Enable plugins and extensions that are otherwise
disabled by default

--exit-zero Exit with status code "0" even if there are errors.
--install-hook=INSTALL_HOOK

Install a hook that is run prior to a commit for the
supported version control system.

-j JOBS, --jobs=JOBS Number of subprocesses to use to run checks in
parallel. This is ignored on Windows. The default,
"auto", will auto-detect the number of processors
available to use. (Default: auto)

--output-file=OUTPUT_FILE
Redirect report to a file.

--tee Write to stdout and output-file.
--append-config=APPEND_CONFIG

Provide extra config files to parse in addition to the
files found by Flake8 by default. These files are the
last ones read and so they take the highest precedence
when multiple files provide the same option.

--config=CONFIG Path to the config file that will be the authoritative
config source. This will cause Flake8 to ignore all
other configuration files.

--isolated Ignore all configuration files.
--benchmark Print benchmark information about this run of Flake8
--bug-report Print information necessary when preparing a bug

report
--builtins=BUILTINS define more built-ins, comma separated
--doctests check syntax of the doctests
--include-in-doctest=INCLUDE_IN_DOCTEST

Run doctests only on these files
--exclude-from-doctest=EXCLUDE_FROM_DOCTEST

Skip these files when running doctests
--max-complexity=MAX_COMPLEXITY

McCabe complexity threshold

3.2.4 EXAMPLES

Simply running flake8 against the current directory:

flake8
flake8 .

Running flake8 against a specific path:

flake8 path/to/file.py

Ignoring violations from flake8:

3.2. flake8 35

flake8 Documentation, Release 3.7.6

flake8 --ignore E101
flake8 --ignore E1,E202

Only report certain violations:

flake8 --select E101
flake8 --select E2,E742

Analyzing only a diff:

git diff -U0 | flake8 --diff -

Generate information for a bug report:

flake8 --bug-report

3.2.5 SEE ALSO

Flake8 documentation: http://flake8.pycqa.org

Flake8 Options and Examples: http://flake8.pycqa.org/en/latest/user/options.html

PyCodeStyle documentation: http://pycodestyle.pycqa.org

PyFlakes: https://github.com/pycqa/pyflakes

McCabe: https://github.com/pycqa/mccabe

3.2.6 BUGS

Please report all bugs to https://gitlab.com/pycqa/flake8

36 Chapter 3. User Guide

http://flake8.pycqa.org
http://flake8.pycqa.org/en/latest/user/options.html
http://pycodestyle.pycqa.org
https://github.com/pycqa/pyflakes
https://github.com/pycqa/mccabe
https://gitlab.com/pycqa/flake8

CHAPTER 4

Plugin Developer Guide

If you’re maintaining a plugin for Flake8 or creating a new one, you should read this section of the documentation.
It explains how you can write your plugins and distribute them to others.

4.1 Writing Plugins for Flake8

Since Flake8 2.0, the Flake8 tool has allowed for extensions and custom plugins. In Flake8 3.0, we’re expanding
that ability to customize and extend and we’re attempting to thoroughly document it. Some of the documentation in
this section may reference third-party documentation to reduce duplication and to point you, the developer, towards
the authoritative documentation for those pieces.

4.1.1 Getting Started

To get started writing a Flake8 plugin you first need:

• An idea for a plugin

• An available package name on PyPI

• One or more versions of Python installed

• A text editor or IDE of some kind

• An idea of what kind of plugin you want to build:

– Formatter

– Check

Once you’ve gathered these things, you can get started.

All plugins for Flake8 must be registered via entry points. In this section we cover:

• How to register your plugin so Flake8 can find it

37

https://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points

flake8 Documentation, Release 3.7.6

• How to make Flake8 provide your check plugin with information (via command-line flags, function/class
parameters, etc.)

• How to make a formatter plugin

• How to write your check plugin so that it works with Flake8 2.x and 3.x

Registering a Plugin with Flake8

To register any kind of plugin with Flake8, you need:

1. A way to install the plugin (whether it is packaged on its own or as part of something else). In this section, we
will use a setup.py written for an example plugin.

2. A name for your plugin that will (ideally) be unique.

3. A somewhat recent version of setuptools (newer than 0.7.0 but preferably as recent as you can attain).

Flake8 relies on functionality provided by setuptools called Entry Points. These allow any package to register a
plugin with Flake8 via that package’s setup.py file.

Let’s presume that we already have our plugin written and it’s in a module called flake8_example. We might
have a setup.py that looks something like:

import setuptools

requires = [
"flake8 > 3.0.0",

]

flake8_entry_point = # ...

setuptools.setup(
name="flake8_example",
license="MIT",
version="0.1.0",
description="our extension to flake8",
author="Me",
author_email="example@example.com",
url="https://gitlab.com/me/flake8_example",
packages=[

"flake8_example",
],
install_requires=requires,
entry_points={

flake8_entry_point: [
'X = flake8_example:ExamplePlugin',

],
},
classifiers=[

"Framework :: Flake8",
"Environment :: Console",
"Intended Audience :: Developers",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python",
"Programming Language :: Python :: 2",
"Programming Language :: Python :: 3",
"Topic :: Software Development :: Libraries :: Python Modules",
"Topic :: Software Development :: Quality Assurance",

(continues on next page)

38 Chapter 4. Plugin Developer Guide

https://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points

flake8 Documentation, Release 3.7.6

(continued from previous page)

],
)

Note specifically these lines:

flake8_entry_point = # ...

setuptools.setup(
snip ...
entry_points={

flake8_entry_point: [
'X = flake8_example:ExamplePlugin',

],
},
snip ...

)

We tell setuptools to register our entry point X inside the specific grouping of entry-points that flake8 should look in.

Flake8 presently looks at three groups:

• flake8.extension

• flake8.report

If your plugin is one that adds checks to Flake8, you will use flake8.extension. If your plugin performs extra
report handling (formatting, filtering, etc.) it will use flake8.report.

If our ExamplePlugin is something that adds checks, our code would look like:

setuptools.setup(
snip ...
entry_points={

'flake8.extension': [
'X = flake8_example:ExamplePlugin',

],
},
snip ...

)

The X in checking plugins define what error codes it is going to report. So if the plugin reports only the error code
X101 your entry-point would look like:

X101 = flake8_example.ExamplePlugin

If your plugin reports several error codes that all start with X10, then it would look like:

X10 = flake8_example.ExamplePlugin

If all of your plugin’s error codes start with X1 then it would look like:

X1 = flake8_example.ExamplePlugin

Finally, if all of your plugin’s error codes start with just X then it would look like the original example.

Flake8 requires each entry point to be unique amongst all plugins installed in the users environment. Selecting an
entry point that is already used can cause plugins to be deactivated without warning!

Please Note: Your entry point does not need to be exactly 4 characters as of Flake8 3.0. Consider using an entry
point with 3 letters followed by 3 numbers (i.e. ABC123).

4.1. Writing Plugins for Flake8 39

flake8 Documentation, Release 3.7.6

Receiving Information For A Check Plugin

Plugins to Flake8 have a great deal of information that they can request from a FileProcessor instance. Histor-
ically, Flake8 has supported two types of plugins:

1. classes that accept parsed abstract syntax trees (ASTs)

2. functions that accept a range of arguments

Flake8 now does not distinguish between the two types of plugins. Any plugin can accept either an AST or a range of
arguments. Further, any plugin that has certain callable attributes can also register options and receive parsed options.

Indicating Desired Data

Flake8 inspects the plugin’s signature to determine what parameters it expects using flake8.utils.
parameters_for(). flake8.plugins.manager.Plugin.parameters caches the values so that each
plugin makes that fairly expensive call once per plugin. When processing a file, a plugin can ask for any of the
following:

• blank_before

• blank_lines

• checker_state

• indent_char

• indent_level

• line_number

• logical_line

• multiline

• noqa

• previous_indent_level

• previous_logical

• previous_unindented_logical_line

• tokens

Some properties are set once per file for plugins which iterate itself over the data instead of being called on each
physical or logical line.

• filename

• file_tokens

• lines

• max_line_length

• max_doc_length

• total_lines

• verbose

These parameters can also be supplied to plugins working on each line separately.

Plugins that depend on physical_line or logical_line are run on each physical or logical line once. These
parameters should be the first in the list of arguments (with the exception of self). Plugins that need an AST (e.g.,

40 Chapter 4. Plugin Developer Guide

flake8 Documentation, Release 3.7.6

PyFlakes and McCabe) should depend on tree. These plugins will run once per file. The parameters listed above
can be combined with physical_line, logical_line, and tree.

Registering Options

Any plugin that has callable attributes add_options and parse_options can parse option information and
register new options.

Your add_options function should expect to receive an instance of OptionManager. An OptionManager
instance behaves very similarly to optparse.OptionParser. It, however, uses the layer that Flake8 has de-
veloped on top of optparse to also handle configuration file parsing. add_option() creates an Option which
accepts the same parameters as optparse as well as three extra boolean parameters:

• parse_from_config

The command-line option should also be parsed from config files discovered by Flake8.

Note: This takes the place of appending strings to a list on the optparse.OptionParser.

• comma_separated_list

The value provided to this option is a comma-separated list. After parsing the value, it should be further broken
up into a list. This also allows us to handle values like:

E123,E124,
E125,
E126

• normalize_paths

The value provided to this option is a path. It should be normalized to be an absolute path. This can be combined
with comma_separated_list to allow a comma-separated list of paths.

Each of these options works individually or can be combined. Let’s look at a couple examples from Flake8. In each
example, we will have option_manager which is an instance of OptionManager.

option_manager.add_option(
'--max-line-length', type='int', metavar='n',
default=defaults.MAX_LINE_LENGTH, parse_from_config=True,
help='Maximum allowed line length for the entirety of this run. '

'(Default: %default)',
)

Here we are adding the --max-line-length command-line option which is always an integer and will be parsed
from the configuration file. Since we provide a default, we take advantage of optparse’s willingness to display that
in the help text with %default.

option_manager.add_option(
'--select', metavar='errors', default='',
parse_from_config=True, comma_separated_list=True,
help='Comma-separated list of errors and warnings to enable.'

' For example, ``--select=E4,E51,W234``. (Default: %default)',
)

In adding the --select command-line option, we’re also indicating to the OptionManager that we want the
value parsed from the config files and parsed as a comma-separated list.

4.1. Writing Plugins for Flake8 41

https://docs.python.org/3/library/optparse.html#optparse.OptionParser
https://docs.python.org/3/library/optparse.html#module-optparse
https://docs.python.org/3/library/optparse.html#module-optparse
https://docs.python.org/3/library/optparse.html#optparse.OptionParser
https://docs.python.org/3/library/optparse.html#module-optparse

flake8 Documentation, Release 3.7.6

option_manager.add_option(
'--exclude', metavar='patterns', default=defaults.EXCLUDE,
comma_separated_list=True, parse_from_config=True,
normalize_paths=True,
help='Comma-separated list of files or directories to exclude.'

'(Default: %default)',
)

Finally, we show an option that uses all three extra flags. Values from --exclude will be parsed from the config,
converted from a comma-separated list, and then each item will be normalized.

For information about other parameters to add_option() refer to the documentation of optparse.

Accessing Parsed Options

When a plugin has a callable parse_options attribute, Flake8 will call it and attempt to provide the
OptionManager instance, the parsed options which will be an instance of optparse.Values, and the extra
arguments that were not parsed by the OptionManager. If that fails, we will just pass the optparse.Values.
In other words, your parse_options callable will have one of the following signatures:

def parse_options(option_manager, options, args):
pass

or
def parse_options(options):

pass

Developing a Formatting Plugin for Flake8

Flake8 allowed for custom formatting plugins in version 3.0.0. Let’s write a plugin together:

from flake8.formatting import base

class Example(base.BaseFormatter):
"""Flake8's example formatter."""

pass

We notice, as soon as we start, that we inherit from Flake8’s BaseFormatter class. If we follow the instructions
to register a plugin and try to use our example formatter, e.g., flake8 --format=example then Flake8 will
fail because we did not implement the format method. Let’s do that next.

class Example(base.BaseFormatter):
"""Flake8's example formatter."""

def format(self, error):
return 'Example formatter: {0!r}'.format(error)

With that we’re done. Obviously this isn’t a very useful formatter, but it should highlight the simplicity of creating a
formatter with Flake8. If we wanted to instead create a formatter that aggregated the results and returned XML, JSON,
or subunit we could also do that. Flake8 interacts with the formatter in two ways:

1. It creates the formatter and provides it the options parsed from the configuration files and command-line

2. It uses the instance of the formatter and calls handle with the error.

42 Chapter 4. Plugin Developer Guide

https://docs.python.org/3/library/optparse.html#module-optparse

flake8 Documentation, Release 3.7.6

By default flake8.formatting.base.BaseFormatter.handle() simply calls the format method and
then write. Any extra handling you wish to do for formatting purposes should override the handle method.

API Documentation

class flake8.formatting.base.BaseFormatter(options)
Class defining the formatter interface.

options
The options parsed from both configuration files and the command-line.

filename
If specified by the user, the path to store the results of the run.

output_fd
Initialized when the start() is called. This will be a file object opened for writing.

newline
The string to add to the end of a line. This is only used when the output filename has been specified.

after_init()
Initialize the formatter further.

beginning(filename)
Notify the formatter that we’re starting to process a file.

Parameters filename (str) – The name of the file that Flake8 is beginning to report results
from.

finished(filename)
Notify the formatter that we’ve finished processing a file.

Parameters filename (str) – The name of the file that Flake8 has finished reporting results
from.

format(error)
Format an error reported by Flake8.

This method must be implemented by subclasses.

Parameters error (flake8.style_guide.Violation) – This will be an instance of
Violation.

Returns The formatted error string.

Return type str

handle(error)
Handle an error reported by Flake8.

This defaults to calling format(), show_source(), and then write(). To extend how errors are
handled, override this method.

Parameters error (flake8.style_guide.Violation) – This will be an instance of
Violation.

show_benchmarks(benchmarks)
Format and print the benchmarks.

show_source(error)
Show the physical line generating the error.

This also adds an indicator for the particular part of the line that is reported as generating the problem.

4.1. Writing Plugins for Flake8 43

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

flake8 Documentation, Release 3.7.6

Parameters error (flake8.style_guide.Violation) – This will be an instance of
Violation.

Returns The formatted error string if the user wants to show the source. If the user does not
want to show the source, this will return None.

Return type str

show_statistics(statistics)
Format and print the statistics.

start()
Prepare the formatter to receive input.

This defaults to initializing output_fd if filename

stop()
Clean up after reporting is finished.

write(line, source)
Write the line either to the output file or stdout.

This handles deciding whether to write to a file or print to standard out for subclasses. Override this if you
want behaviour that differs from the default.

Parameters

• line (str) – The formatted string to print or write.

• source (str) – The source code that has been formatted and associated with the line of
output.

Writing Plugins For Flake8 2 and 3

Plugins have existed for Flake8 2.x for a few years. There are a number of these on PyPI already. While it did not
seem reasonable for Flake8 to attempt to provide a backwards compatible shim for them, we did decide to try to
document the easiest way to write a plugin that’s compatible across both versions.

Note: If your plugin does not register options, it should Just Work.

The only two breaking changes in Flake8 3.0 is the fact that we no longer check the option parser for a list of
strings to parse from a config file and we no longer patch pep8 or pycodestyle’s stdin_get_value functions. On
Flake8 2.x, to have an option parsed from the configuration files that Flake8 finds and parses you would have to
do something like:

parser.add_option('-X', '--example-flag', type='string',
help='...')

parser.config_options.append('example-flag')

For Flake8 3.0, we have added three arguments to the add_option() method you will call on the parser you
receive:

• parse_from_config which expects True or False

When True, Flake8 will parse the option from the config files Flake8 finds.

• comma_separated_list which expects True or False

When True, Flake8 will split the string intelligently and handle extra whitespace. The parsed value will be a
list.

44 Chapter 4. Plugin Developer Guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

flake8 Documentation, Release 3.7.6

• normalize_paths which expects True or False

When True, Flake8 will:

– remove trailing path separators (i.e., os.path.sep)

– return the absolute path for values that have the separator in them

All three of these options can be combined or used separately.

Parsing Options from Configuration Files

The example from Flake8 2.x now looks like:

parser.add_option('-X', '--example-flag', type='string',
parse_from_config=True,
help='...')

Parsing Comma-Separated Lists

Now let’s imagine that the option we want to add is expecting a comma-separatd list of values from the user (e.g.,
--select E123,W503,F405). Flake8 2.x often forced users to parse these lists themselves since pep8 special-
cased certain flags and left others on their own. Flake8 3.0 adds comma_separated_list so that the parsed
option is already a list for plugin authors. When combined with parse_from_config this means that users can
also do something like:

example-flag =
first,
second,
third,
fourth,
fifth

And Flake8 will just return the list:

["first", "second", "third", "fourth", "fifth"]

Normalizing Values that Are Paths

Finally, let’s imagine that our new option wants a path or list of paths. To ensure that these paths are semi-
normalized (the way Flake8 2.x used to work) we need only pass normalize_paths=True. If you have spec-
ified comma_separated_list=True then this will parse the value as a list of paths that have been normalized.
Otherwise, this will parse the value as a single path.

Option Handling on Flake8 2 and 3

To ease the transition, the Flake8 maintainers have released flake8-polyfill. flake8-polyfill provides a con-
venience function to help users transition between Flake8 2 and 3 without issue. For example, if your plugin has to
work on Flake8 2.x and 3.x but you want to take advantage of some of the new options to add_option, you can do

4.1. Writing Plugins for Flake8 45

https://pypi.org/project/flake8-polyfill/

flake8 Documentation, Release 3.7.6

from flake8_polyfill import options

class MyPlugin(object):
@classmethod
def add_options(cls, parser):

options.register(
parser,
'--application-names', default='', type='string',
help='Names of the applications to be checked.',
parse_from_config=True,
comma_separated_list=True,

)
options.register(

parser,
'--style-name', default='', type='string',
help='The name of the style convention you want to use',
parse_from_config=True,

)
options.register(

parser,
'--application-paths', default='', type='string',
help='Locations of the application code',
parse_from_config=True,
comma_separated_list=True,
normalize_paths=True,

)

@classmethod
def parse_options(cls, parsed_options):

cls.application_names = parsed_options.application_names
cls.style_name = parsed_options.style_name
cls.application_paths = parsed_options.application_paths

flake8-polyfill will handle these extra options using callbacks to the option parser. The project has direct
replications of the functions that Flake8 uses to provide the same functionality. This means that the values you
receive should be identically parsed whether you’re using Flake8 2.x or 3.x.

flake8_polyfill.options.register(parser, *args, **kwargs)
Register an option for the Option Parser provided by Flake8.

Parameters

• parser – The option parser being used by Flake8 to handle command-line options.

• *args – Positional arguments that you might otherwise pass to add_option.

• **kwargs – Keyword arguments you might otherwise pass to add_option.

Standard In Handling on Flake8 2.5, 2.6, and 3

After releasing Flake8 2.6, handling standard-in became a bit trickier for some plugins. Flake8 2.5 and earlier
had started monkey-patching pep8’s stdin_get_value function. 2.6 switched to pycodestyle and only monkey-
patched that. 3.0 has its own internal implementation and uses that but does not directly provide anything for plugins
using pep8 and pycodestyle’s stdin_get_value function. flake8-polyfill provides this functionality for
plugin developers via its flake8_polyfill.stdin module.

If a plugin needs to read the content from stdin, it can do the following:

46 Chapter 4. Plugin Developer Guide

flake8 Documentation, Release 3.7.6

from flake8_polyfill import stdin

stdin.monkey_patch('pep8') # To monkey-patch only pep8
stdin.monkey_patch('pycodestyle') # To monkey-patch only pycodestyle
stdin.monkey_patch('all') # To monkey-patch both pep8 and pycodestyle

Further, when using all, flake8-polyfill does not require both packages to be installed but will attempt to
monkey-patch both and will silently ignore the fact that pep8 or pycodestyle is not installed.

flake8_polyfill.stdin.monkey_patch(which)
Monkey-patch the specified module with the appropriate stdin.

On Flake8 2.5 and lower, Flake8 would would monkey-patch pep8.stdin_get_value for everyone. This
avoided problems where stdin might be exhausted.

On Flake8 2.6, Flake8 stopped patching pep8 and started monkey-patching pycodestyle.
stdin_get_value.

On Flake8 3.x, Flake8 has no need to monkey patch either pep8 or pycodestyle.

This function accepts three parameters:

• pep8

• pycodestyle

• all

“all” is a special value that will monkey-patch both “pep8” and “pycodestyle”.

Parameters which (str) – The name of the module to patch.

Returns Nothing.

Return type NoneType

4.1. Writing Plugins for Flake8 47

https://docs.python.org/3/library/stdtypes.html#str

flake8 Documentation, Release 3.7.6

48 Chapter 4. Plugin Developer Guide

CHAPTER 5

Contributor Guide

If you are reading Flake8’s source code for fun or looking to contribute, you should read this portion of the docu-
mentation. This is a mix of documenting the internal-only interfaces Flake8 and documenting reasoning for Flake8’s
design.

5.1 Exploring Flake8’s Internals

While writing Flake8 3.0, the developers attempted to capture some reasoning and decision information in internal
documentation meant for future developers and maintaners. Most of this information is unnecessary for users and
plugin developers. Some of it, however, is linked to from the plugin development documentation.

Keep in mind that not everything will be here and you may need to help pull information out of the developers’ heads
and into these documents. Please pull gently.

5.1.1 Contributing to Flake8

There are many ways to contribute to Flake8, and we encourage them all:

• contributing bug reports and feature requests

• contributing documentation (and yes that includes this document)

• reviewing and triaging bugs and merge requests

Before you go any further, please allow me to reassure you that I do want your contribution. If you think your
contribution might not be valuable, I reassure you that any help you can provide is valuable.

Code of Conduct

Flake8 adheres to the Python Code Quality Authority’s Code of Conduct. Any violations of the Code of Conduct
should be reported to Ian Stapleton Cordasco (graffatcolmingov [at] gmail [dot] com).

49

http://meta.pycqa.org/en/latest/code-of-conduct.html

flake8 Documentation, Release 3.7.6

Setting Up A Development Environment

To contribute to Flake8’s development, you simply need:

• Python (one of the versions we support)

• tox

We suggest installing this like:

$ pip install --user tox

Or

$ python<version> -m pip install --user tox

• your favorite editor

Filing a Bug

When filing a bug against Flake8, please fill out the issue template as it is provided to you by GitLab. If your bug is in
reference to one of the checks that Flake8 reports by default, please do not report them to Flake8 unless Flake8
is doing something to prevent the check from running or you have some reason to believe Flake8 is inhibiting the
effectiveness of the check.

Please search for closed and open bug reports before opening new ones.

All bug reports about checks should go to their respective projects:

• Error codes starting with E and W should be reported to pycodestyle.

• Error codes starting with F should be reported to pyflakes

• Error codes starting with C should be reported to mccabe

Requesting a New Feature

When requesting a new feature in Flake8, please fill out the issue template. Please also note if there are any existing
alternatives to your new feature either via plugins, or combining command-line options. Please provide example use
cases. For example, do not ask for a feature like this:

I need feature frobulate for my job.

Instead ask:

I need Flake8 to frobulate these files because my team expects them to frobulated but Flake8 currently
does not frobulate them. We tried using --filename but we could not create a pattern that worked.

The more you explain about why you need a feature, the more likely we are to understand your needs and help you to
the best of our ability.

Contributing Documentation

To contribute to Flake8’s documentation, you might want to first read a little about reStructuredText or Sphinx.
Flake8 has a guide of best practices when contributing to our documentation. For the most part, you should be fine
following the structure and style of the rest of Flake8’s documentation.

All of Flake8’s documentation is written in reStructuredText and rendered by Sphinx. The source (reStructuredText)
lives in docs/source/. To build the documentation the way our Continuous Integration does, run:

$ tox -e docs

50 Chapter 5. Contributor Guide

https://tox.readthedocs.io/
https://gitlab.com/pycqa/flake8
https://github.com/pycqa/pycodestyle
https://github.com/pyflakes/pyflakes
https://github.com/pycqa/mccabe

flake8 Documentation, Release 3.7.6

To view the documentation locally, you can also run:

$ tox -e serve-docs

You can run the latter in a separate terminal and continuously re-run the documentation generation and refresh the
documentation you’re working on.

Note: We lint our documentation just like we lint our code. You should also run:

$ tox -e linters

After making changes and before pushing them to ensure that they will pass our CI tests.

Contributing Code

Flake8 development happens on GitLab. Code contributions should be submitted there.

Merge requests should:

• Fix one issue and fix it well

Fix the issue, but do not include extraneous refactoring or code reformatting. In other words, keep the diff short,
but only as short as is necessary to fix the bug appropriately and add sufficient testing around it. Long diffs are
fine, so long as everything that it includes is necessary to the purpose of the merge request.

• Have descriptive titles and descriptions

Searching old merge requests is made easier when a merge request is well described.

• Have commits that follow this style:

Create a short title that is 50 characters long

Ensure the title and commit message use the imperative voice. The
commit and you are doing something. Also, please ensure that the
body of the commit message does not exceed 72 characters.

The body may have multiple paragraphs as necessary.

The final line of the body references the issue appropriately.

• Follow the guidelines in Writing Code for Flake8

Reviewing and Triaging Issues and Merge Requests

When reviewing other people’s merge requests and issues, please be especially mindful of how the words you choose
can be read by someone else. We strive for professional code reviews that do not insult the contributor’s intelligence or
impugn their character. The code review should be focused on the code, its effectiveness, and whether it is appropriate
for Flake8.

If you have the ability to edit an issue or merge request’s labels, please do so to make search and prioritization easier.

Flake8 uses milestones with both issues and merge requests. This provides direction for other contributors about
when an issue or merge request will be delivered.

5.1. Exploring Flake8’s Internals 51

https://gitlab.com/pycqa/flake8

flake8 Documentation, Release 3.7.6

5.1.2 Writing Documentation for Flake8

The maintainers of Flake8 believe strongly in benefit of style guides. Hence, for all contributors who wish to work on
our documentation, we’ve put together a loose set of guidelines and best practices when adding to our documentation.

View the docs locally before submitting

You can and should generate the docs locally before you submit a pull request with your changes. You can build the
docs by running:

$ tox -e docs

From the directory containing the tox.ini file (which also contains the docs/ directory that this file lives in).

Note: If the docs don’t build locally, they will not build in our continuous integration system. We will generally not
merge any pull request that fails continuous integration.

Run the docs linter tests before submitting

You should run the doc8 linter job before you’re ready to commit and fix any errors found.

Capitalize Flake8 in prose

We believe that by capitalizing Flake8 in prose, we can help reduce confusion between the command-line usage of
flake8 and the project.

We also have defined a global replacement |Flake8| that should be used and will replace each instance with
:program:`Flake8`.

Use the prompt directive for command-line examples

When documenting something on the command-line, use the .. prompt:: directive to make it easier for users to
copy and paste into their terminal.

Example:

.. prompt:: bash

flake8 --select E123,W503 dir/
flake8 --ignore E24,W504 dir

Wrap lines around 79 characters

We use a maximum line-length in our documentation that is similar to the default in Flake8. Please wrap lines at 79
characters (or less).

52 Chapter 5. Contributor Guide

flake8 Documentation, Release 3.7.6

Use two new-lines before new sections

After the final paragraph of a section and before the next section title, use two new-lines to separate them. This makes
reading the plain-text document a little nicer. Sphinx ignores these when rendering so they have no semantic meaning.

Example:

Section Header
==============

Paragraph.

Next Section Header
===================

Paragraph.

Surround document titles with equal symbols

To indicate the title of a document, we place an equal number of = symbols on the lines before and after the title. For
example:

==================================
Writing Documentation for Flake8

==================================

Note also that we “center” the title by adding a leading space and having extra = symbols at the end of those lines.

Use the option template for new options

All of Flake8’s command-line options are documented in the User Guide. Each option is documented individually
using the .. option:: directive provided by Sphinx. At the top of the document, in a reStructuredText comment,
is a template that should be copied and pasted into place when documening new options.

Note: The ordering of the options page is the order that options are printed in the output of:

$ flake8 --help

Please insert your option documentation according to that order.

Use anchors for easy reference linking

Use link anchors to allow for other areas of the documentation to use the :ref: role for intralinking documentation.
Example:

.. _use-anchors:

Use anchors for easy reference linking
======================================

Somewhere in this paragraph we will :ref:`reference anchors
<use-anchors>`.

5.1. Exploring Flake8’s Internals 53

flake8 Documentation, Release 3.7.6

Note: You do not need to provide custom text for the :ref: if the title of the section has a title that is sufficient.

Keep your audience in mind

Flake8’s documentation has three distinct (but not separate) audiences:

1. Users

2. Plugin Developers

3. Flake8 Developers and Contributors

At the moment, you’re one of the third group (because you’re contributing or thinking of contributing).

Consider that most Users aren’t very interested in the internal working of Flake8. When writing for Users, focus on
how to do something or the behaviour of a certain piece of configuration or invocation.

Plugin developers will only care about the internals of Flake8 as much as they will have to interact with that. Keep
discussions of internal to the mininmum required.

Finally, Flake8 Developers and Contributors need to know how everything fits together. We don’t need detail about
every line of code, but cogent explanations and design specifications will help future developers understand the Hows
and Whys of Flake8’s internal design.

5.1.3 Writing Code for Flake8

The maintainers of Flake8 unsurprisingly have some opinions about the style of code maintained in the project.

At the time of this writing, Flake8 enables all of PyCodeStyle’s checks, all of PyFlakes’ checks, and sets a maximum
complexity value (for McCabe) of 10. On top of that, we enforce PEP-0257 style doc-strings via PyDocStyle (disabling
only D203) and Google’s import order style using flake8-import-order.

The last two are a little unusual, so we provide examples below.

PEP-0257 style doc-strings

Flake8 attempts to document both internal interfaces as well as our API and doc-strings provide a very convenient
way to do so. Even if a function, class, or method isn’t included specifically in our documentation having a doc-string
is still preferred. Further, Flake8 has some style preferences that are not checked by PyDocStyle.

For example, while most people will never read the doc-string for flake8.main.git.hook() that doc-string still
provides value to the maintainers and future collaborators. They (very explicitly) describe the purpose of the function,
a little of what it does, and what parameters it accepts as well as what it returns.

src/flake8/main/git.py
def hook(lazy=False, strict=False):

"""Execute Flake8 on the files in git's index.

Determine which files are about to be committed and run Flake8 over them
to check for violations.

:param bool lazy:
Find files not added to the index prior to committing. This is useful
if you frequently use ``git commit -a`` for example. This defaults to
False since it will otherwise include files not in the index.

(continues on next page)

54 Chapter 5. Contributor Guide

flake8 Documentation, Release 3.7.6

(continued from previous page)

:param bool strict:
If True, return the total number of errors/violations found by Flake8.
This will cause the hook to fail.

:returns:
Total number of errors found during the run.

:rtype:
int

"""
NOTE(sigmavirus24): Delay import of application until we need it.
from flake8.main import application
app = application.Application()
with make_temporary_directory() as tempdir:

filepaths = list(copy_indexed_files_to(tempdir, lazy))
app.initialize(['.'])
app.options.exclude = update_excludes(app.options.exclude, tempdir)
app.options._running_from_vcs = True
app.run_checks(filepaths)

app.report_errors()
if strict:

return app.result_count
return 0

Note that because the parameters hook and strict are simply boolean parameters, we inline the type declaration
for those parameters, e.g.,

:param bool lazy:

Also note that we begin the description of the parameter on a new-line and indented 4 spaces.

On the other hand, we also separate the parameter type declaration in some places where the name is a little longer,
e.g.,

src/flake8/formatting/base.py
def format(self, error):

"""Format an error reported by Flake8.

This method **must** be implemented by subclasses.

:param error:
This will be an instance of :class:`~flake8.style_guide.Error`.

:type error:
flake8.style_guide.Error

:returns:
The formatted error string.

:rtype:
str

"""

Here we’ve separated :param error: and :type error:.

Following the above examples and guidelines should help you write doc-strings that are stylistically correct for
Flake8.

Imports

Flake8 follows the import guidelines that Google published in their Python Style Guide. In short this includes:

5.1. Exploring Flake8’s Internals 55

flake8 Documentation, Release 3.7.6

• Only importing modules

• Grouping imports into

– standard library imports

– third-party dependency imports

– local application imports

• Ordering imports alphabetically

In practice this would look something like:

import configparser
import logging
from os import path

import requests

from flake8 import exceptions
from flake8.formatting import base

As a result, of the above, we do not:

• Import objects into a namespace to make them accessible from that namespace

• Import only the objects we’re using

• Add comments explaining that an import is a standard library module or something else

Other Stylistic Preferences

Finally, Flake8 has a few other stylistic preferences that it does not presently enforce automatically.

Multi-line Function/Method Calls

When you find yourself having to split a call to a function or method up across multiple lines, insert a new-line after
the opening parenthesis, e.g.,

src/flake8/main/options.py
add_option(

'-v', '--verbose', default=0, action='count',
parse_from_config=True,
help='Print more information about what is happening in flake8.'

' This option is repeatable and will increase verbosity each '
'time it is repeated.',

)

src/flake8/formatting/base.py
def show_statistics(self, statistics):

"""Format and print the statistics."""
for error_code in statistics.error_codes():

stats_for_error_code = statistics.statistics_for(error_code)
statistic = next(stats_for_error_code)
count = statistic.count
count += sum(stat.count for stat in stats_for_error_code)
self._write('{count:<5} {error_code} {message}'.format(

count=count,
(continues on next page)

56 Chapter 5. Contributor Guide

flake8 Documentation, Release 3.7.6

(continued from previous page)

error_code=error_code,
message=statistic.message,

))

In the first example, we put a few of the parameters all on one line, and then added the last two on their own. In the
second example, each parameter has its own line. This particular rule is a little subjective. The general idea is that
putting one parameter per-line is preferred, but sometimes it’s reasonable and understandable to group a few together
on one line.

Comments

If you’re adding an important comment, be sure to sign it. In Flake8 we generally sign comments by preceding them
with NOTE(<name>). For example,

NOTE(sigmavirus24): The format strings are a little confusing, even
to me, so here's a quick explanation:
We specify the named value first followed by a ':' to indicate we're
formatting the value.
Next we use '<' to indicate we want the value left aligned.
Then '10' is the width of the area.
For floats, finally, we only want only want at most 3 digits after
the decimal point to be displayed. This is the precision and it
can not be specified for integers which is why we need two separate
format strings.
float_format = '{value:<10.3} {statistic}'.format
int_format = '{value:<10} {statistic}'.format

Ian is well known across most websites as sigmavirus24 so he signs his comments that way.

Verbs Belong in Function Names

Flake8 prefers that functions have verbs in them. If you’re writing a function that returns a generator of files then
generate_files will always be preferable to make_files or files.

5.1.4 Releasing Flake8

There is not much that is hard to find about how Flake8 is released.

• We use major releases (e.g., 2.0.0, 3.0.0, etc.) for big, potentially backwards incompatible, releases.

• We use minor releases (e.g., 2.1.0, 2.2.0, 3.1.0, 3.2.0, etc.) for releases that contain features and dependency
version changes.

• We use patch releases (e.g., 2.1.1, 2.1.2, 3.0.1, 3.0.10, etc.) for releases that contain only bug fixes.

In this sense we follow semantic versioning. But we follow it as more of a set of guidelines. We’re also not perfect, so
we may make mistakes, and that’s fine.

Major Releases

Major releases are often associated with backwards incompatibility. Flake8 hopes to avoid those, but will occasion-
ally need them.

5.1. Exploring Flake8’s Internals 57

flake8 Documentation, Release 3.7.6

Historically, Flake8 has generated major releases for:

• Unvendoring dependencies (2.0)

• Large scale refactoring (2.0, 3.0)

• Subtly breaking CLI changes (3.0)

• Breaking changes to its plugin interface (3.0)

Major releases can also contain:

• Bug fixes (which may have backwards incompatible solutions)

• New features

• Dependency changes

Minor Releases

Minor releases often have new features in them, which we define roughly as:

• New command-line flags

• New behaviour that does not break backwards compatibility

• New errors detected by dependencies, e.g., by raising the upper limit on PyFlakes we introduce F405

• Bug fixes

Patch Releases

Patch releases should only ever have bug fixes in them.

We do not update dependency constraints in patch releases. If you do not install Flake8 from PyPI, there is a chance
that your packager is using different requirements. Some downstream redistributors have been known to force a new
version of PyFlakes, pep8/PyCodestyle, or McCabe into place. Occasionally this will cause breakage when using
Flake8. There is little we can do to help you in those cases.

Process

To prepare a release, we create a file in docs/source/releases/ named: {{ release_number }}.rst
(e.g., 3.0.0.rst). We note bug fixes, improvements, and dependency version changes as well as other items of note
for users.

Before releasing, the following tox test environments must pass:

• Python 2.7 (a.k.a., tox -e py27)

• Python 3.6 (a.k.a., tox -e py36)

• Python 3.7 (a.k.a., tox -e py37)

• PyPy (a.k.a., tox -e pypy)

• Linters (a.k.a., tox -e linters)

We tag the most recent commit that passes those items and contains our release notes.

Finally, we run tox -e release to build source distributions (e.g., flake8-3.0.0.tar.gz), universal
wheels, and upload them to PyPI with Twine.

58 Chapter 5. Contributor Guide

flake8 Documentation, Release 3.7.6

5.1.5 What Happens When You Run Flake8

Given Flake8 3.0’s new organization and structure, it might be a bit much for some people to understand what
happens from when you call flake8 on the command-line to when it completes. This section aims to give you
something of a technical overview of what exactly happens.

Invocation

The exact way that we end up in our main function for Flake8 depends on how you invoke it. If you do something
like:

$ flake8

Then your shell looks up where flake8 the executable lives and executes it. In almost every case, this is a tiny python
script generated by setuptools using the console script entry points that Flake8 declares in its setup.py. This
might look something like:

#!/path/to/python<version>
EASY-INSTALL-ENTRY-SCRIPT: 'flake8==3.0.0','console_scripts','flake8'
__requires__ = 'flake8==3.0.0'
import sys
from pkg_resources import load_entry_point

if __name__ == '__main__':
sys.exit(

load_entry_point('flake8==3.0.0', 'console_scripts', 'flake8')()
)

If instead you invoke it like:

$ python -m flake8

Then you’re relying on Python to find flake8.__main__ and run that. In both cases, however, you end up in
flake8.main.cli.main(). This is the primary way that users will end up starting Flake8. This function creates
an instance of Application.

via Setuptools

If you’re invoking Flake8 from your setup.py then you actually end up in flake8.main.
setuptools_command.Flake8.run(). This then collects the files that are included in the package information
and creates an instance of Application.

via Git or Mercurial

In both cases, they call their respective hook functions which create instances of Application.

Application Logic

When we create our Application instance, we record the start time and parse our command-line arguments so we
can configure the verbosity of Flake8’s logging. For the most part, every path then calls run() which in turn calls:

• initialize()

• run_checks()

5.1. Exploring Flake8’s Internals 59

flake8 Documentation, Release 3.7.6

• report_errors()

• report_benchmarks()

Our Git hook, however, runs these individually.

Application Initialization

initialize() loads all of our plugins, registers the options for those plugins, parses the command-line arguments,
makes our formatter (as selected by the user), makes our StyleGuide and finally makes our file checker
manager.

Running Our Checks

run_checks() then creates an instance of flake8.checker.FileChecker for each file to be checked after
aggregating all of the files that are not excluded and match the provided file-patterns. Then, if we’re on a system
that supports multiprocessing and flake8 --jobs is either auto or a number greater than 1, we will begin
processing the files in subprocesses. Otherwise, we’ll run the checks in parallel.

After we start running the checks, we start aggregating the reported violations in the main process. After the checks
are done running, we record the end time.

Reporting Violations

Next, the application takes the violations from the file checker manager, and feeds them through the StyleGuide.
This relies on a DecisionEngine instance to determine whether the particular error code is selected or ignored
and then appropriately sends it to the formatter (or not).

Reporting Benchmarks

Finally, if the user has asked to see benchmarks (i.e., flake8 --benchmark) then we print the benchmarks.

Exiting

Once run() has finished, we then call exit() which looks at how many errors were reported and whether the user
specified flake8 --exit-zero and exits with the appropriate exit code.

5.1.6 How Checks are Run

In Flake8 2.x, Flake8 delegated check running to pep8. In 3.0 Flake8 takes on that responsibility. This has
allowed for simpler handling of the --jobs parameter (using multiprocessing) and simplified our fallback if
something goes awry with concurency. At the lowest level we have a FileChecker. Instances of FileChecker
are created for each file to be analyzed by Flake8. Each instance, has a copy of all of the plugins registered with
setuptools in the flake8.extension entry-point group.

The FileChecker instances are managed by an instance of Manager. The Manager instance handles creating
sub-processes with multiprocessing module and falling back to running checks in serial if an operating sys-
tem level error arises. When creating FileChecker instances, the Manager is responsible for determining if a
particular file has been excluded.

60 Chapter 5. Contributor Guide

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing

flake8 Documentation, Release 3.7.6

Processing Files

Unfortunately, since Flake8 took over check running from pep8/pycodestyle, it also had to take over parsing and
processing files for the checkers to use. Since it couldn’t reuse pycodestyle’s functionality (since it did not separate
cleanly the processing from check running) that function was isolated into the FileProcessor class. We moved
several helper functions into the flake8.processor module (see also Processor Utility Functions).

API Reference

class flake8.checker.FileChecker(filename, checks, options)
Manage running checks for a file and aggregate the results.

check_physical_eol(token)
Run physical checks if and only if it is at the end of the line.

handle_newline(token_type)
Handle the logic when encountering a newline token.

process_tokens()
Process tokens and trigger checks.

This can raise a flake8.exceptions.InvalidSyntax exception. Instead of using this directly,
you should use flake8.checker.FileChecker.run_checks().

report(error_code, line_number, column, text, line=None)
Report an error by storing it in the results list.

run_ast_checks()
Run all checks expecting an abstract syntax tree.

run_check(plugin, **arguments)
Run the check in a single plugin.

run_checks()
Run checks against the file.

run_logical_checks()
Run all checks expecting a logical line.

run_physical_checks(physical_line, override_error_line=None)
Run all checks for a given physical line.

A single physical check may return multiple errors.

class flake8.checker.Manager(style_guide, arguments, checker_plugins)
Manage the parallelism and checker instances for each plugin and file.

This class will be responsible for the following:

• Determining the parallelism of Flake8, e.g.:

– Do we use multiprocessing or is it unavailable?

– Do we automatically decide on the number of jobs to use or did the user provide that?

• Falling back to a serial way of processing files if we run into an OSError related to multiprocessing

• Organizing the results of each checker so we can group the output together and make our output determin-
istic.

is_path_excluded(path)
Check if a path is excluded.

5.1. Exploring Flake8’s Internals 61

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing

flake8 Documentation, Release 3.7.6

Parameters path (str) – Path to check against the exclude patterns.

Returns True if there are exclude patterns and the path matches, otherwise False.

Return type bool

make_checkers(paths=None)
Create checkers for each file.

report()
Report all of the errors found in the managed file checkers.

This iterates over each of the checkers and reports the errors sorted by line number.

Returns A tuple of the total results found and the results reported.

Return type tuple(int, int)

run()
Run all the checkers.

This will intelligently decide whether to run the checks in parallel or whether to run them in serial.

If running the checks in parallel causes a problem (e.g., https://gitlab.com/pycqa/flake8/issues/74) this also
implements fallback to serial processing.

run_parallel()
Run the checkers in parallel.

run_serial()
Run the checkers in serial.

start(paths=None)
Start checking files.

Parameters paths (list) – Path names to check. This is passed directly to
make_checkers().

stop()
Stop checking files.

class flake8.processor.FileProcessor(filename, options, lines=None)
Processes a file and holdes state.

This processes a file by generating tokens, logical and physical lines, and AST trees. This also provides a way
of passing state about the file to checks expecting that state. Any public attribute on this object can be requested
by a plugin. The known public attributes are:

• blank_before

• blank_lines

• checker_state

• indent_char

• indent_level

• line_number

• logical_line

• max_line_length

• max_doc_length

• multiline

62 Chapter 5. Contributor Guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://gitlab.com/pycqa/flake8/issues/74
https://docs.python.org/3/library/stdtypes.html#list

flake8 Documentation, Release 3.7.6

• noqa

• previous_indent_level

• previous_logical

• previous_unindented_logical_line

• tokens

• file_tokens

• total_lines

• verbose

blank_before = None
Number of preceding blank lines

blank_lines = None
Number of blank lines

build_ast()
Build an abstract syntax tree from the list of lines.

build_logical_line()
Build a logical line from the current tokens list.

build_logical_line_tokens()
Build the mapping, comments, and logical line lists.

check_physical_error(error_code, line)
Update attributes based on error code and line.

checker_state = None
Current checker state

delete_first_token()
Delete the first token in the list of tokens.

file_tokens
Return the complete set of tokens for a file.

Accessing this attribute may raise an InvalidSyntax exception.

Raises flake8.exceptions.InvalidSyntax

generate_tokens()
Tokenize the file and yield the tokens.

Raises flake8.exceptions.InvalidSyntax – If a tokenize.TokenError is
raised while generating tokens.

hang_closing = None
User provided option for hang closing

indent_char = None
Character used for indentation

indent_level = None
Current level of indentation

inside_multiline(line_number)
Context-manager to toggle the multiline attribute.

5.1. Exploring Flake8’s Internals 63

https://docs.python.org/3/library/tokenize.html#tokenize.TokenError

flake8 Documentation, Release 3.7.6

keyword_arguments_for(parameters, arguments=None)
Generate the keyword arguments for a list of parameters.

line_for(line_number)
Retrieve the physical line at the specified line number.

line_number = None
Line number in the file

logical_line = None
Current logical line

max_doc_length = None
Maximum docstring / comment line length as configured by the user

max_line_length = None
Maximum line length as configured by the user

multiline = None
Whether the current physical line is multiline

next_line()
Get the next line from the list.

next_logical_line()
Record the previous logical line.

This also resets the tokens list and the blank_lines count.

noqa = None
Whether or not we’re observing NoQA

previous_indent_level = None
Previous level of indentation

previous_logical = None
Previous logical line

previous_unindented_logical_line = None
Previous unindented (i.e. top-level) logical line

read_lines()
Read the lines for this file checker.

read_lines_from_filename()
Read the lines for a file.

read_lines_from_stdin()
Read the lines from standard in.

reset_blank_before()
Reset the blank_before attribute to zero.

should_ignore_file()
Check if flake8: noqa is in the file to be ignored.

Returns True if a line matches defaults.NOQA_FILE, otherwise False

Return type bool

split_line(token)
Split a physical line’s line based on new-lines.

This also auto-increments the line number for the caller.

64 Chapter 5. Contributor Guide

https://docs.python.org/3/library/functions.html#bool

flake8 Documentation, Release 3.7.6

statistics = None
Statistics dictionary

strip_utf_bom()
Strip the UTF bom from the lines of the file.

tokens = None
Current set of tokens

total_lines = None
Total number of lines in the file

update_checker_state_for(plugin)
Update the checker_state attribute for the plugin.

update_state(mapping)
Update the indent level based on the logical line mapping.

verbose = None
Verbosity level of Flake8

visited_new_blank_line()
Note that we visited a new blank line.

Utility Functions

flake8.processor.count_parentheses(current_parentheses_count, token_text)
Count the number of parentheses.

flake8.processor.expand_indent(line)
Return the amount of indentation.

Tabs are expanded to the next multiple of 8.

>>> expand_indent(' ')
4
>>> expand_indent('\t')
8
>>> expand_indent(' \t')
8
>>> expand_indent(' \t')
16

flake8.processor.is_eol_token(token)
Check if the token is an end-of-line token.

flake8.processor.is_multiline_string(token)
Check if this is a multiline string.

flake8.processor.log_token(log, token)
Log a token to a provided logging object.

flake8.processor.mutate_string(text)
Replace contents with ‘xxx’ to prevent syntax matching.

>>> mute_string('"abc"')
'"xxx"'
>>> mute_string("'''abc'''")
"'''xxx'''"

(continues on next page)

5.1. Exploring Flake8’s Internals 65

flake8 Documentation, Release 3.7.6

(continued from previous page)

>>> mute_string("r'abc'")
"r'xxx'"

flake8.processor.token_is_newline(token)
Check if the token type is a newline token type.

5.1.7 Command Line Interface

The command line interface of Flake8 is modeled as an application via Application. When a user runs flake8
at their command line, main() is run which handles management of the application.

User input is parsed twice to accommodate logging and verbosity options passed by the user as early as possible. This
is so as much logging can be produced as possible.

The default Flake8 options are registered by register_default_options(). Trying to register these options
in plugins will result in errors.

API Documentation

flake8.main.cli.main(argv=None)
Execute the main bit of the application.

This handles the creation of an instance of Application, runs it, and then exits the application.

Parameters argv (list) – The arguments to be passed to the application for parsing.

class flake8.main.application.Application(program=’flake8’, version=’3.7.6’)
Abstract our application into a class.

args = None
The left over arguments that were not parsed by option_manager

catastrophic_failure = None
Whether or not something catastrophic happened and we should exit with a non-zero status code

check_plugins = None
The instance of flake8.plugins.manager.Checkers

config_finder = None
The instance of flake8.options.config.ConfigFileFinder

end_time = None
The timestamp when the Application finished reported errors.

exit()
Handle finalization and exiting the program.

This should be the last thing called on the application instance. It will check certain options and exit
appropriately.

file_checker_manager = None
The flake8.checker.Manager that will handle running all of the checks selected by the user.

find_plugins()
Find and load the plugins for this application.

If check_plugins, or formatting_plugins are None then this method will update them with the
appropriate plugin manager instance. Given the expense of finding plugins (via entrypoints) we want
this to be idempotent and so only update those attributes if they are None.

66 Chapter 5. Contributor Guide

https://docs.python.org/3/library/stdtypes.html#list

flake8 Documentation, Release 3.7.6

formatter = None
The user-selected formatter from formatting_plugins

formatter_for(formatter_plugin_name)
Retrieve the formatter class by plugin name.

formatting_plugins = None
The instance of flake8.plugins.manager.ReportFormatters

guide = None
The flake8.style_guide.StyleGuideManager built from the user’s options

initialize(argv)
Initialize the application to be run.

This finds the plugins, registers their options, and parses the command-line arguments.

local_plugins = None
The flake8.options.config.LocalPlugins found in config

make_config_finder()
Make our ConfigFileFinder based on preliminary opts and args.

make_file_checker_manager()
Initialize our FileChecker Manager.

make_formatter(formatter_class=None)
Initialize a formatter based on the parsed options.

make_guide()
Initialize our StyleGuide.

option_manager = None
The instance of flake8.options.manager.OptionManager used to parse and handle the options
and arguments passed by the user

options = None
The user-supplied options parsed into an instance of optparse.Values

parse_configuration_and_cli(argv=None)
Parse configuration files and the CLI options.

Parameters argv (list) – Command-line arguments passed in directly.

parse_preliminary_options_and_args(argv=None)
Get preliminary options and args from CLI, pre-plugin-loading.

We need to know the values of a few standard options and args now, so that we can find config files and
configure logging.

Since plugins aren’t loaded yet, there may be some as-yet-unknown options; we ignore those for now,
they’ll be parsed later when we do real option parsing.

Sets self.prelim_opts and self.prelim_args.

Parameters argv (list) – Command-line arguments passed in directly.

parsed_diff = None
The parsed diff information

prelim_args = None
The preliminary arguments parsed from CLI before plugins are loaded

prelim_opts = None
The preliminary options parsed from CLI before plugins are loaded, into a optparse.Values instance

5.1. Exploring Flake8’s Internals 67

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

flake8 Documentation, Release 3.7.6

program = None
The name of the program being run

register_plugin_options()
Register options provided by plugins to our option manager.

report()
Report errors, statistics, and benchmarks.

report_benchmarks()
Aggregate, calculate, and report benchmarks for this run.

report_errors()
Report all the errors found by flake8 3.0.

This also updates the result_count attribute with the total number of errors, warnings, and other
messages found.

report_statistics()
Aggregate and report statistics from this run.

result_count = None
The number of errors, warnings, and other messages after running flake8 and taking into account ignored
errors and lines.

run(argv=None)
Run our application.

This method will also handle KeyboardInterrupt exceptions for the entirety of the flake8 application. If it
sees a KeyboardInterrupt it will forcibly clean up the Manager.

run_checks(files=None)
Run the actual checks with the FileChecker Manager.

This method encapsulates the logic to make a Manger instance run the checks it is managing.

Parameters files (list) – List of filenames to process

running_against_diff = None
Whether the program is processing a diff or not

start_time = None
The timestamp when the Application instance was instantiated.

total_result_count = None
The total number of errors before accounting for ignored errors and lines.

version = None
The version of the program being run

flake8.main.options.register_default_options(option_manager)
Register the default options on our OptionManager.

The default options include:

• -v/--verbose

• -q/--quiet

• --count

• --diff

• --exclude

• --filename

68 Chapter 5. Contributor Guide

https://docs.python.org/3/library/stdtypes.html#list

flake8 Documentation, Release 3.7.6

• --format

• --hang-closing

• --ignore

• --extend-ignore

• --per-file-ignores

• --max-line-length

• --max-doc-length

• --select

• --disable-noqa

• --show-source

• --statistics

• --enable-extensions

• --exit-zero

• -j/--jobs

• --output-file

• --tee

• --append-config

• --config

• --isolated

• --benchmark

• --bug-report

5.1.8 Built-in Formatters

By default Flake8 has two formatters built-in, default and pylint. These correspond to two classes Default
and Pylint.

In Flake8 2.0, pep8 handled formatting of errors and also allowed users to specify an arbitrary format string as a
parameter to --format. In order to allow for this backwards compatibility, Flake8 3.0 made two choices:

1. To not limit a user’s choices for --format to the format class names

2. To make the default formatter attempt to use the string provided by the user if it cannot find a formatter with
that name.

Default Formatter

The Default continues to use the same default format string as pep8: '%(path)s:%(row)d:%(col)d:
%(code)s %(text)s'.

To provide the default functionality it overrides two methods:

1. after_init

2. format

5.1. Exploring Flake8’s Internals 69

flake8 Documentation, Release 3.7.6

The former allows us to inspect the value provided to --format by the user and alter our own format based on that
value. The second simply uses that format string to format the error.

class flake8.formatting.default.Default(options)
Default formatter for Flake8.

This also handles backwards compatibility for people specifying a custom format string.

after_init()
Check for a custom format string.

Pylint Formatter

The Pylint simply defines the default Pylint format string from pep8: '%(path)s:%(row)d: [%(code)s]
%(text)s'.

class flake8.formatting.default.Pylint(options)
Pylint formatter for Flake8.

5.1.9 Option and Configuration Handling

Option Management

Command-line options are often also set in configuration files for Flake8. While not all options are meant to be
parsed from configuration files, many default options are also parsed from configuration files as well as most plugin
options.

In Flake8 2, plugins received a optparse.OptionParser instance and called optparse.OptionParser.
add_option() to register options. If the plugin author also wanted to have that option parsed from config files they
also had to do something like:

parser.config_options.append('my_config_option')
parser.config_options.extend(['config_opt1', 'config_opt2'])

This was previously undocumented and led to a lot of confusion about why registered options were not automatically
parsed from configuration files.

Since Flake8 3 was rewritten from scratch, we decided to take a different approach to configuration file parsing.
Instead of needing to know about an undocumented attribute that pep8 looks for, Flake8 3 now accepts a parameter
to add_option, specifically parse_from_config which is a boolean value.

Flake8 does this by creating its own abstractions on top of optparse. The first abstraction is the flake8.
options.manager.Option class. The second is the flake8.options.manager.OptionManager. In
fact, we add three new parameters:

• parse_from_config

• comma_separated_list

• normalize_paths

The last two are not specifically for configuration file handling, but they do improve that dramatically. We found that
there were options that, when specified in a configuration file, often necessitated being spit multiple lines and those
options were almost always comma-separated. For example, let’s consider a user’s list of ignored error codes for a
project:

70 Chapter 5. Contributor Guide

https://docs.python.org/3/library/optparse.html#optparse.OptionParser
https://docs.python.org/3/library/optparse.html#optparse.OptionParser.add_option
https://docs.python.org/3/library/optparse.html#optparse.OptionParser.add_option
https://docs.python.org/3/library/optparse.html#module-optparse

flake8 Documentation, Release 3.7.6

[flake8]
ignore =

Reasoning
E111,
Reasoning
E711,
Reasoning
E712,
Reasoning
E121,
Reasoning
E122,
Reasoning
E123,
Reasoning
E131,
Reasoning
E251

It makes sense here to allow users to specify the value this way, but, the standard libary’s configparser.
RawConfigParser class does returns a string that looks like

"\nE111, \nE711, \nE712, \nE121, \nE122, \nE123, \nE131, \nE251 "

This means that a typical call to str.split() with ',' will not be sufficient here. Telling Flake8 that something
is a comma-separated list (e.g., comma_separated_list=True) will handle this for you. Flake8 will return:

["E111", "E711", "E712", "E121", "E122", "E123", "E131", "E251"]

Next let’s look at how users might like to specify their exclude list. Presently OpenStack’s Nova project has this
line in their tox.ini:

exclude = .venv,.git,.tox,dist,doc,*openstack/common/*,*lib/python*,*egg,build,tools/
→˓xenserver*,releasenotes

We think we can all agree that this would be easier to read like this:

exclude =
.venv,
.git,
.tox,
dist,
doc,

openstack/common/,

lib/python,

*egg,
build,
tools/xenserver*,
releasenotes

In this case, since these are actually intended to be paths, we would specify both comma_separated_list=True
and normalize_paths=True because we want the paths to be provided to us with some consistency (either all
absolute paths or not).

Now let’s look at how this will actually be used. Most plugin developers will receive an instance of OptionManager
so to ease the transition we kept the same API as the optparse.OptionParser object. The only difference is
that add_option() accepts the three extra arguments we highlighted above.

5.1. Exploring Flake8’s Internals 71

https://docs.python.org/3/library/configparser.html#configparser.RawConfigParser
https://docs.python.org/3/library/configparser.html#configparser.RawConfigParser
https://docs.python.org/3/library/stdtypes.html#str.split
https://github.com/openstack/nova/blob/3eb190c4cfc0eefddac6c2cc1b94a699fb1687f8/tox.ini#L155
https://docs.python.org/3/library/optparse.html#optparse.OptionParser

flake8 Documentation, Release 3.7.6

Configuration File Management

In Flake8 2, configuration file discovery and management was handled by pep8. In pep8’s 1.6 release series, it
drastically broke how discovery and merging worked (as a result of trying to improve it). To avoid a dependency
breaking Flake8 again in the future, we have created our own discovery and management. As part of managing this
ourselves, we decided to change management/discovery for 3.0.0. We have done the following:

• User files (files stored in a user’s home directory or in the XDG directory inside their home directory) are the
first files read. For example, if the user has a ~/.flake8 file, we will read that first.

• Project files (files stored in the current directory) are read next and merged on top of the user file. In other words,
configuration in project files takes precedence over configuration in user files.

• New in 3.0.0 The user can specify --append-config <path-to-file> repeatedly to include extra
configuration files that should be read and take precedence over user and project files.

• New in 3.0.0 The user can specify --config <path-to-file> to so this file is the only configuration
file used. This is a change from Flake8 2 where pep8 would simply merge this configuration file into the
configuration generated by user and project files (where this takes precedence).

• New in 3.0.0 The user can specify --isolated to disable configuration via discovered configuration files.

To facilitate the configuration file management, we’ve taken a different approach to discovery and management of files
than pep8. In pep8 1.5, 1.6, and 1.7 configuration discovery and management was centralized in 66 lines of very terse
python which was confusing and not very explicit. The terseness of this function (Flake8’s authors believe) caused
the confusion and problems with pep8’s 1.6 series. As such, Flake8 has separated out discovery, management, and
merging into a module to make reasoning about each of these pieces easier and more explicit (as well as easier to test).

Configuration file discovery is managed by the ConfigFileFinder object. This object needs to know information
about the program’s name, any extra arguments passed to it, and any configuration files that should be appended to
the list of discovered files. It provides methods for finding the files and similar methods for parsing those fles. For
example, it provides local_config_files() to find known local config files (and append the extra configuration
files) and it also provides local_configs() to parse those configuration files.

Note: local_config_files also filters out non-existent files.

Configuration file merging and managemnt is controlled by the MergedConfigParser. This requires the instance
of OptionManager that the program is using, the list of appended config files, and the list of extra arguments. This
object is currently the sole user of the ConfigFileFinder object. It appropriately initializes the object and uses it
in each of

• parse_cli_config()

• parse_local_config()

• parse_user_config()

Finally, merge_user_and_local_config() takes the user and local configuration files that are parsed by
parse_local_config() and parse_user_config(). The main usage of the MergedConfigParser
is in aggregate_options().

Aggregating Configuration File and Command Line Arguments

aggregate_options() accepts an instance of OptionManager and does the work to parse the command-line
arguments passed by the user necessary for creating an instance of MergedConfigParser.

After parsing the configuration file, we determine the default ignore list. We use the defaults from the OptionManager
and update those with the parsed configuration files. Finally we parse the user-provided options one last time using the

72 Chapter 5. Contributor Guide

https://github.com/PyCQA/pep8/blob/b8088a2b6bc5b76bece174efad877f764529bc74/pep8.py#L1981..L2047
https://github.com/PyCQA/pep8/blob/b8088a2b6bc5b76bece174efad877f764529bc74/pep8.py#L1981..L2047

flake8 Documentation, Release 3.7.6

option defaults and configuration file values as defaults. The parser merges on the command-line specified arguments
for us so we have our final, definitive, aggregated options.

API Documentation

flake8.options.aggregator.aggregate_options(manager, config_finder, arglist=None, val-
ues=None)

Aggregate and merge CLI and config file options.

Parameters

• manager (flake8.options.manager.OptionManager) – The instance of the
OptionManager that we’re presently using.

• config_finder (flake8.options.config.ConfigFileFinder) – The con-
fig file finder to use.

• arglist (list) – The list of arguments to pass to manager.parse_args. In most
cases this will be None so parse_args uses sys.argv. This is mostly available to make
testing easier.

• values (optparse.Values) – Previously parsed set of parsed options.

Returns Tuple of the parsed options and extra arguments returned by manager.parse_args.

Return type tuple(optparse.Values, list)

class flake8.options.manager.Option(short_option_name=None, long_option_name=None,
action=None, default=None, type=None,
dest=None, nargs=None, const=None,
choices=None, callback=None, call-
back_args=None, callback_kwargs=None,
help=None, metavar=None, parse_from_config=False,
comma_separated_list=False, normalize_paths=False)

Our wrapper around an optparse.Option object to add features.

__init__(short_option_name=None, long_option_name=None, action=None, default=None,
type=None, dest=None, nargs=None, const=None, choices=None, callback=None,
callback_args=None, callback_kwargs=None, help=None, metavar=None,
parse_from_config=False, comma_separated_list=False, normalize_paths=False)

Initialize an Option instance wrapping optparse.Option.

The following are all passed directly through to optparse.

Parameters

• short_option_name (str) – The short name of the option (e.g., -x). This will be
the first argument passed to Option.

• long_option_name (str) – The long name of the option (e.g.,
--xtra-long-option). This will be the second argument passed to Option.

• action (str) – Any action allowed by optparse.

• default – Default value of the option.

• type – Any type allowed by optparse.

• dest – Attribute name to store parsed option value as.

• nargs – Number of arguments to parse for this option.

5.1. Exploring Flake8’s Internals 73

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/optparse.html#module-optparse
https://docs.python.org/3/library/optparse.html#module-optparse

flake8 Documentation, Release 3.7.6

• const – Constant value to store on a common destination. Usually used in conjuntion
with action="store_const".

• choices (iterable) – Possible values for the option.

• callback (callable) – Callback used if the action is "callback".

• callback_args (iterable) – Additional positional arguments to the callback
callable.

• callback_kwargs (dictionary) – Keyword arguments to the callback callable.

• help (str) – Help text displayed in the usage information.

• metavar (str) – Name to use instead of the long option name for help text.

The following parameters are for Flake8’s option handling alone.

Parameters

• parse_from_config (bool) – Whether or not this option should be parsed out of
config files.

• comma_separated_list (bool) – Whether the option is a comma separated list
when parsing from a config file.

• normalize_paths (bool) – Whether the option is expecting a path or list of paths
and should attempt to normalize the paths to absolute paths.

normalize(value, *normalize_args)
Normalize the value based on the option configuration.

to_optparse()
Convert a Flake8 Option to an optparse Option.

class flake8.options.manager.OptionManager(prog=None, version=None, usage=’%prog
[options] file file ...’)

Manage Options and OptionParser while adding post-processing.

__init__(prog=None, version=None, usage=’%prog [options] file file ...’)
Initialize an instance of an OptionManager.

Parameters

• prog (str) – Name of the actual program (e.g., flake8).

• version (str) – Version string for the program.

• usage (str) – Basic usage string used by the OptionParser.

__weakref__
list of weak references to the object (if defined)

add_option(*args, **kwargs)
Create and register a new option.

See parameters for Option for acceptable arguments to this method.

Note: short_option_name and long_option_name may be specified positionally as they are
with optparse normally.

extend_default_ignore(error_codes)
Extend the default ignore list with the error codes provided.

74 Chapter 5. Contributor Guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

flake8 Documentation, Release 3.7.6

Parameters error_codes (list) – List of strings that are the error/warning codes with
which to extend the default ignore list.

extend_default_select(error_codes)
Extend the default select list with the error codes provided.

Parameters error_codes (list) – List of strings that are the error/warning codes with
which to extend the default select list.

static format_plugin(plugin)
Convert a PluginVersion into a dictionary mapping name to value.

generate_epilog()
Create an epilog with the version and name of each of plugin.

generate_versions(format_str=’%(name)s: %(version)s’, join_on=’, ’)
Generate a comma-separated list of versions of plugins.

parse_args(args=None, values=None)
Proxy to calling the OptionParser’s parse_args method.

parse_known_args(args=None, values=None)
Parse only the known arguments from the argument values.

Replicate a little argparse behaviour while we’re still on optparse.

register_plugin(name, version, local=False)
Register a plugin relying on the OptionManager.

Parameters

• name (str) – The name of the checker itself. This will be the name attribute of the class
or function loaded from the entry-point.

• version (str) – The version of the checker that we’re using.

• local (bool) – Whether the plugin is local to the project/repository or not.

remove_from_default_ignore(error_codes)
Remove specified error codes from the default ignore list.

Parameters error_codes (list) – List of strings that are the error/warning codes to attempt
to remove from the extended default ignore list.

update_version_string()
Update the flake8 version string.

class flake8.options.config.ConfigFileFinder(program_name, args, extra_config_files)
Encapsulate the logic for finding and reading config files.

__init__(program_name, args, extra_config_files)
Initialize object to find config files.

Parameters

• program_name (str) – Name of the current program (e.g., flake8).

• args (list) – The extra arguments passed on the command-line.

• extra_config_files (list) – Extra configuration files specified by the user to read.

__weakref__
list of weak references to the object (if defined)

cli_config(files)
Read and parse the config file specified on the command-line.

5.1. Exploring Flake8’s Internals 75

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

flake8 Documentation, Release 3.7.6

generate_possible_local_files()
Find and generate all local config files.

local_config_files()
Find all local config files which actually exist.

Filter results from generate_possible_local_files() based on whether the filename exists or
not.

Returns List of files that exist that are local project config files with extra config files appended
to that list (which also exist).

Return type [str]

local_configs()
Parse all local config files into one config object.

local_configs_with_files()
Parse all local config files into one config object.

Return (config, found_config_files) tuple.

user_config()
Parse the user config file into a config object.

user_config_file()
Find the user-level config file.

class flake8.options.config.MergedConfigParser(option_manager, config_finder)
Encapsulate merging different types of configuration files.

This parses out the options registered that were specified in the configuration files, handles extra configuration
files, and returns dictionaries with the parsed values.

GETBOOL_ACTIONS = {'store_false', 'store_true'}
Set of actions that should use the getbool() method.

GETINT_TYPES = {'count', 'int'}
Set of types that should use the getint() method.

__init__(option_manager, config_finder)
Initialize the MergedConfigParser instance.

Parameters

• option_manager (flake8.options.manager.OptionManager) – Initialized
OptionManager.

• config_finder (flake8.options.config.ConfigFileFinder) – Initial-
ized ConfigFileFinder.

__weakref__
list of weak references to the object (if defined)

config_finder = None
Our instance of our ConfigFileFinder

config_options = None
Mapping of configuration option names to Option instances

is_configured_by(config)
Check if the specified config parser has an appropriate section.

merge_user_and_local_config()
Merge the parsed user and local configuration files.

76 Chapter 5. Contributor Guide

https://docs.python.org/3/library/stdtypes.html#str

flake8 Documentation, Release 3.7.6

Returns Dictionary of the parsed and merged configuration options.

Return type dict

option_manager = None
Our instance of flake8.options.manager.OptionManager

parse(cli_config=None, isolated=False)
Parse and return the local and user config files.

First this copies over the parsed local configuration and then iterates over the options in the user configu-
ration and sets them if they were not set by the local configuration file.

Parameters

• cli_config (str) – Value of –config when specified at the command-line. Overrides
all other config files.

• isolated (bool) – Determines if we should parse configuration files at all or not. If
running in isolated mode, we ignore all configuration files

Returns Dictionary of parsed configuration options

Return type dict

parse_cli_config(config_path)
Parse and return the file specified by –config.

parse_local_config()
Parse and return the local configuration files.

parse_user_config()
Parse and return the user configuration files.

program_name = None
The prog value for the cli parser

5.1.10 Plugin Handling

Plugin Management

Flake8 3.0 added support for other plugins besides those which define new checks. It now supports:

• extra checks

• alternative report formatters

To facilitate this, Flake8 needed a more mature way of managing plugins. Thus, we developed the
PluginManager which accepts a namespace and will load the plugins for that namespace. A PluginManager
creates and manages many Plugin instances.

A Plugin lazily loads the underlying entry-point provided by setuptools. The entry-point will be loaded either by
calling load_plugin() or accessing the plugin attribute. We also use this abstraction to retrieve options that the
plugin wishes to register and parse.

The only public method the PluginManager provides is map(). This will accept a function (or other callable) and
call it with each plugin as the first parameter.

We build atop the PluginManager with the PluginTypeManager. It is expected that users of the
PluginTypeManager will subclass it and specify the namespace, e.g.,

5.1. Exploring Flake8’s Internals 77

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

flake8 Documentation, Release 3.7.6

class ExamplePluginType(flake8.plugin.manager.PluginTypeManager):
namespace = 'example-plugins'

This provides a few extra methods via the PluginManager’s map method.

Finally, we create two classes of plugins:

• Checkers

• ReportFormatters

These are used to interact with each of the types of plugins individually.

Note: Our inspiration for our plugin handling comes from the author’s extensive experience with stevedore.

Default Plugins

Finally, Flake8 has always provided its own plugin shim for Pyflakes. As part of that we carry our own shim in-tree
and now store that in flake8.plugins.pyflakes.

Flake8 also registers plugins for pep8. Each check in pep8 requires different parameters and it cannot easily be
shimmed together like Pyflakes was. As such, plugins have a concept of a “group”. If you look at our setup.py you
will see that we register pep8 checks roughly like so:

pep8.<check-name> = pep8:<check-name>

We do this to identify that <check-name>> is part of a group. This also enables us to special-case how we handle
reporting those checks. Instead of reporting each check in the --version output, we report pep8 and check pep8
the module for a __version__ attribute. We only report it once to avoid confusing users.

API Documentation

class flake8.plugins.manager.PluginManager(namespace, local_plugins=None)
Find and manage plugins consistently.

__init__(namespace, local_plugins=None)
Initialize the manager.

Parameters

• namespace (str) – Namespace of the plugins to manage, e.g., ‘flake8.extension’.

• local_plugins (list) – Plugins from config (as “X = path.to:Plugin” strings).

map(func, *args, **kwargs)
Call func with the plugin and *args and **kwargs after.

This yields the return value from func for each plugin.

Parameters

• func (collections.Callable) – Function to call with each plugin. Signature
should at least be:

def myfunc(plugin):
pass

78 Chapter 5. Contributor Guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

flake8 Documentation, Release 3.7.6

Any extra positional or keyword arguments specified with map will be passed along to this
function after the plugin. The plugin passed is a Plugin.

• args – Positional arguments to pass to func after each plugin.

• kwargs – Keyword arguments to pass to func after each plugin.

versions()
Generate the versions of plugins.

Returns Tuples of the plugin_name and version

Return type tuple

class flake8.plugins.manager.Plugin(name, entry_point, local=False)
Wrap an EntryPoint from setuptools and other logic.

__init__(name, entry_point, local=False)
Initialize our Plugin.

Parameters

• name (str) – Name of the entry-point as it was registered with setuptools.

• entry_point (setuptools.EntryPoint) – EntryPoint returned by setuptools.

• local (bool) – Is this a repo-local plugin?

disable(optmanager)
Add the plugin name to the default ignore list.

enable(optmanager, options=None)
Remove plugin name from the default ignore list.

execute(*args, **kwargs)
Call the plugin with *args and **kwargs.

group()
Find and parse the group the plugin is in.

is_in_a_group()
Determine if this plugin is in a group.

Returns True if the plugin is in a group, otherwise False.

Return type bool

load_plugin()
Retrieve the plugin for this entry-point.

This loads the plugin, stores it on the instance and then returns it. It does not reload it after the first time,
it merely returns the cached plugin.

Returns Nothing

off_by_default
Return whether the plugin is ignored by default.

parameter_names
List of argument names that need to be passed to the plugin.

parameters
List of arguments that need to be passed to the plugin.

5.1. Exploring Flake8’s Internals 79

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

flake8 Documentation, Release 3.7.6

plugin
Load and return the plugin associated with the entry-point.

This property implicitly loads the plugin and then caches it.

plugin_name
Return the name of the plugin.

provide_options(optmanager, options, extra_args)
Pass the parsed options and extra arguments to the plugin.

register_options(optmanager)
Register the plugin’s command-line options on the OptionManager.

Parameters optmanager (flake8.options.manager.OptionManager) – Instanti-
ated OptionManager to register options on.

Returns Nothing

to_dictionary()
Convert this plugin to a dictionary.

version
Return the version of the plugin.

class flake8.plugins.manager.PluginTypeManager(local_plugins=None)
Parent class for most of the specific plugin types.

get(name, default=None)
Retrieve the plugin referred to by name or return the default.

Parameters

• name (str) – Name of the plugin to retrieve.

• default – Default value to return.

Returns Plugin object referred to by name, if it exists.

Return type Plugin

load_plugins()
Load all plugins of this type that are managed by this manager.

names
Proxy attribute to underlying manager.

plugins
Proxy attribute to underlying manager.

provide_options(optmanager, options, extra_args)
Provide parsed options and extra arguments to the plugins.

register_options(optmanager)
Register all of the checkers’ options to the OptionManager.

register_plugin_versions(optmanager)
Register the plugins and their versions with the OptionManager.

class flake8.plugins.manager.Checkers(local_plugins=None)
All of the checkers registered through entry-points or config.

ast_plugins
List of plugins that expect the AST tree.

80 Chapter 5. Contributor Guide

https://docs.python.org/3/library/stdtypes.html#str

flake8 Documentation, Release 3.7.6

checks_expecting(argument_name)
Retrieve checks that expect an argument with the specified name.

Find all checker plugins that are expecting a specific argument.

logical_line_plugins
List of plugins that expect the logical lines.

physical_line_plugins
List of plugins that expect the physical lines.

register_options(optmanager)
Register all of the checkers’ options to the OptionManager.

This also ensures that plugins that are not part of a group and are enabled by default are enabled on the
option manager.

to_dictionary()
Return a dictionary of AST and line-based plugins.

class flake8.plugins.manager.ReportFormatters(local_plugins=None)
All of the report formatters registered through entry-points/config.

5.1.11 Utility Functions

Flake8 has a few utility functions that it uses internally.

Warning: As should be implied by where these are documented, these are all internal utility functions. Their
signatures and return types may change between releases without notice.

Bugs reported about these internal functions will be closed immediately.

If functions are needed by plugin developers, they may be requested in the bug tracker and after careful considera-
tion they may be added to the documented stable API.

flake8.utils.parse_comma_separated_list(value, regexp=re.compile(’[,\\s]’))
Parse a comma-separated list.

Parameters

• value – String or list of strings to be parsed and normalized.

• regexp (_sre.SRE_Pattern) – Compiled regular expression used to split the value
when it is a string.

Returns List of values with whitespace stripped.

Return type list

parse_comma_separated_list() takes either a string like

"E121,W123,F904"
"E121,\nW123,\nF804"
"E121,\n\tW123,\n\tF804"

Or it will take a list of strings (potentially with whitespace) such as

[" E121\n", "\t\nW123 ", "\n\tF904\n "]

And converts it to a list that looks as follows

5.1. Exploring Flake8’s Internals 81

https://docs.python.org/3/library/stdtypes.html#list

flake8 Documentation, Release 3.7.6

["E121", "W123", "F904"]

This function helps normalize any kind of comma-separated input you or Flake8 might receive. This is most helpful
when taking advantage of Flake8’s additional parameters to Option.

flake8.utils.normalize_path(path, parent=’.’)
Normalize a single-path.

Returns The normalized path.

Return type str

This utility takes a string that represents a path and returns the absolute path if the string has a / in it. It also removes
trailing /s.

flake8.utils.normalize_paths(paths, parent=’.’)
Parse a comma-separated list of paths.

Returns The normalized paths.

Return type [str]

This function utilizes parse_comma_separated_list() and normalize_path() to normalize its input to
a list of strings that should be paths.

flake8.utils.stdin_get_value()
Get and cache it so plugins can use it.

This function retrieves and caches the value provided on sys.stdin. This allows plugins to use this to retrieve
stdin if necessary.

flake8.utils.is_windows()
Determine if we’re running on Windows.

Returns True if running on Windows, otherwise False

Return type bool

This provides a convenient and explicitly named function that checks if we are currently running on a Windows (or
nt) operating system.

flake8.utils.can_run_multiprocessing_on_windows()
Determine if we can use multiprocessing on Windows.

This presently will always return False due to a bug in the multiprocessing module on Windows. Once
fixed, we will check to ensure that the version of Python contains that fix (via version inspection) and condition-
ally re-enable support on Windows.

Returns True if the version of Python is modern enough, otherwise False

Return type bool

This provides a separate and distinct check from is_windows() that allows us to check if the version of Python
we’re using can actually use multiprocessing on Windows.

flake8.utils.is_using_stdin(paths)
Determine if we’re going to read from stdin.

Parameters paths (list) – The paths that we’re going to check.

Returns True if stdin (-) is in the path, otherwise False

Return type bool

82 Chapter 5. Contributor Guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://bugs.python.org/issue27649
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

flake8 Documentation, Release 3.7.6

Another helpful function that is named only to be explicit given it is a very trivial check, this checks if the user specified
- in their arguments to Flake8 to indicate we should read from stdin.

flake8.utils.filenames_from(arg, predicate=None)
Generate filenames from an argument.

Parameters

• arg (str) – Parameter from the command-line.

• predicate (callable) – Predicate to use to filter out filenames. If the predicate returns
True we will exclude the filename, otherwise we will yield it. By default, we include every
filename generated.

Returns Generator of paths

When provided an argument to Flake8, we need to be able to traverse directories in a convenient manner. For
example, if someone runs

$ flake8 flake8/

Then they want us to check all of the files in the directory flake8/. This function will handle that while also handling
the case where they specify a file like:

$ flake8 flake8/__init__.py

flake8.utils.fnmatch(filename, patterns, default=True)
Wrap fnmatch.fnmatch() to add some functionality.

Parameters

• filename (str) – Name of the file we’re trying to match.

• patterns (list) – Patterns we’re using to try to match the filename.

• default (bool) – The default value if patterns is empty

Returns True if a pattern matches the filename, False if it doesn’t. default if patterns is empty.

The standard library’s fnmatch.fnmatch() is excellent at deciding if a filename matches a single pattern. In our
use case, however, we typically have a list of patterns and want to know if the filename matches any of them. This
function abstracts that logic away with a little extra logic.

flake8.utils.parameters_for(plugin)
Return the parameters for the plugin.

This will inspect the plugin and return either the function parameters if the plugin is a function or the parameters
for __init__ after self if the plugin is a class.

Parameters plugin (flake8.plugins.manager.Plugin) – The internal plugin object.

Returns A dictionary mapping the parameter name to whether or not it is required (a.k.a., is posi-
tional only/does not have a default).

Return type dict([(str, bool)])

Flake8 analyzes the parameters to plugins to determine what input they are expecting. Plugins may expect one of
the following:

• physical_line to receive the line as it appears in the file

• logical_line to receive the logical line (not as it appears in the file)

• tree to receive the abstract syntax tree (AST) for the file

5.1. Exploring Flake8’s Internals 83

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/fnmatch.html#fnmatch.fnmatch
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/fnmatch.html#fnmatch.fnmatch
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

flake8 Documentation, Release 3.7.6

We also analyze the rest of the parameters to provide more detail to the plugin. This function will return the parameters
in a consistent way across versions of Python and will handle both classes and functions that are used as plugins. Fur-
ther, if the plugin is a class, it will strip the self argument so we can check the parameters of the plugin consistently.

flake8.utils.parse_unified_diff(diff=None)
Parse the unified diff passed on stdin.

Returns dictionary mapping file names to sets of line numbers

Return type dict

To handle usage of flake8 --diff, Flake8 needs to be able to parse the name of the files in the diff as well as
the ranges indicated the sections that have been changed. This function either accepts the diff as an argument or reads
the diff from standard-in. It then returns a dictionary with filenames as the keys and sets of line numbers as the value.

84 Chapter 5. Contributor Guide

https://docs.python.org/3/library/stdtypes.html#dict

CHAPTER 6

Release Notes and History

6.1 Release Notes and History

All of the release notes that have been recorded for Flake8 are organized here with the newest releases first.

6.1.1 3.x Release Series

3.7.6 – 2019-02-18

You can view the 3.7.6 milestone on GitLab for more details.

Bugs Fixed

• Fix --per-file-ignores for multi-letter error codes (See also GitLab!303, GitLab#507)

• Improve flake8 speed when only 1 filename is passed (See also GitLab!305)

3.7.5 – 2019-02-04

You can view the 3.7.5 milestone on GitLab for more details.

Bugs Fixed

• Fix reporting of pyflakes “referenced before assignment” error (See also GitLab!301, GitLab#503)

3.7.4 – 2019-01-31

You can view the 3.7.4 milestone on GitLab for more details.

85

https://gitlab.com/pycqa/flake8/milestones/29
https://gitlab.com/pycqa/flake8/merge_requests/303
https://gitlab.com/pycqa/flake8/issues/507
https://gitlab.com/pycqa/flake8/merge_requests/305
https://gitlab.com/pycqa/flake8/milestones/28
https://gitlab.com/pycqa/flake8/merge_requests/301
https://gitlab.com/pycqa/flake8/issues/503
https://gitlab.com/pycqa/flake8/milestones/27

flake8 Documentation, Release 3.7.6

Bugs Fixed

• Fix performance regression with lots of per-file-ignores and errors (See also GitLab!299, GitLab#501)

3.7.3 – 2019-01-30

You can view the 3.7.3 milestone on GitLab for more details.

Bugs Fixed

• Fix imports of typing in python 3.5.0 / 3.5.1 (See also GitLab!294, GitLab#498)

• Fix flake8 --statistics (See also GitLab!295, GitLab#499)

• Gracefully ignore flake8-per-file-ignores plugin if installed (See also GitLab!297, GitLab#495)

• Improve error message for malformed per-file-ignores (See also GitLab!298, GitLab#489)

3.7.2 – 2019-01-30

You can view the 3.7.2 milestone on GitLab for more details.

Bugs Fixed

• Fix broken flake8 --diff (regressed in 3.7.0) (See also GitLab!292, GitLab#490)

• Fix typo in plugin exception reporting (See also GitLab!275, GitLab#491)

• Fix AttributeError while attempting to use the legacy api (regressed in 3.7.0) (See also GitLab!293,
GitLab#497)

3.7.1 – 2019-01-30

You can view the 3.7.1 milestone on GitLab for more details.

Bugs Fixed

• Fix capitalized filenames in per-file-ignores setting (See also GitLab!290, GitLab#488)

3.7.0 – 2019-01-29

You can view the 3.7.0 milestone on GitLab for more details.

New Dependency Information

• Add dependency on entrypoints >= 0.3, < 0.4 (See also GitLab!264, GitLab!288)

• Pyflakes has been updated to >= 2.1.0, < 2.2.0 (See also GitLab!283, GitLab!285)

• pycodestyle has been updated to >= 2.5.0, < 2.6.0 (See also GitLab!287)

86 Chapter 6. Release Notes and History

https://gitlab.com/pycqa/flake8/merge_requests/299
https://gitlab.com/pycqa/flake8/issues/501
https://gitlab.com/pycqa/flake8/milestones/26
https://gitlab.com/pycqa/flake8/merge_requests/294
https://gitlab.com/pycqa/flake8/issues/498
https://gitlab.com/pycqa/flake8/merge_requests/295
https://gitlab.com/pycqa/flake8/issues/499
https://gitlab.com/pycqa/flake8/merge_requests/297
https://gitlab.com/pycqa/flake8/issues/495
https://gitlab.com/pycqa/flake8/merge_requests/298
https://gitlab.com/pycqa/flake8/issues/489
https://gitlab.com/pycqa/flake8/milestones/25
https://gitlab.com/pycqa/flake8/merge_requests/292
https://gitlab.com/pycqa/flake8/issues/490
https://gitlab.com/pycqa/flake8/merge_requests/275
https://gitlab.com/pycqa/flake8/issues/491
https://gitlab.com/pycqa/flake8/merge_requests/293
https://gitlab.com/pycqa/flake8/issues/497
https://gitlab.com/pycqa/flake8/milestones/24
https://gitlab.com/pycqa/flake8/merge_requests/290
https://gitlab.com/pycqa/flake8/issues/488
https://gitlab.com/pycqa/flake8/milestones/23
https://gitlab.com/pycqa/flake8/merge_requests/264
https://gitlab.com/pycqa/flake8/merge_requests/288
https://gitlab.com/pycqa/flake8/merge_requests/283
https://gitlab.com/pycqa/flake8/merge_requests/285
https://gitlab.com/pycqa/flake8/merge_requests/287

flake8 Documentation, Release 3.7.6

Features

• Add support for per-file-ignores (See also GitLab!259, GitLab#156, GitLab!281, GitLab#471)

• Enable use of float and complex option types (See also GitLab!261, GitLab#452)

• Improve startup performance by switching from pkg_resources to entrypoints (See also GitLab!264)

• Add metadata for use through the pre-commit git hooks framework (See also GitLab!268, GitLab!284)

• Allow physical line checks to return more than one result (See also GitLab!269)

• Allow # noqa:X123 comments without space between the colon and codes list (See also GitLab!273, Git-
Lab#470)

• Remove broken and unused flake8.listen plugin type (See also GitLab!274, GitLab#480)

3.6.0 – 2018-10-23

You can view the 3.6.0 milestone on GitLab for more details.

New Dependency Information

• pycodestyle has been updated to >= 2.4.0, < 2.5.0 (See also GitLab#381, GitLab#415, GitLab!212, GitLab!230,
GitLab!231)

• Pyflakes has been updated to >= 2.0.0, < 2.1.0 (See also GitLab#422, GitLab!239)

• flake8 requires python 2.x >= 2.7 or python 3.x >= 3.4 (See also GitLab!225)

Features

• Add paths to allow local plugins to exist outside of sys.path (See also GitLab#379, GitLab!211)

• Copy setup.cfg files to the temporary git hook execution directory (See also GitLab!215)

• Only skip a file if # flake8: noqa is on a line by itself (See also GitLab#453, GitLab!219)

• Provide a better user experience for broken plugins (See also GitLab!221)

• Report E902 when a file passed on the command line does not exist (See also GitLab#405, GitLab!227)

• Add --extend-ignore for extending the default ignore instead of overriding it (See also GitLab#365,
GitLab!233)

Bugs Fixed

• Respect a formatter’s newline setting when printing (See also GitLab!222)

• Fix leaking of processes in the legacy api (See also GitLab#410, GitLab!228)

• Fix a SyntaxWarning for an invalid escape sequence (See also GitLab!244)

• Fix DeprecationWarning due to import of abc classes from the collections module (See also Git-
Lab!249)

• Defer setuptools import to improve flake8 startup time (See also GitLab!250)

6.1. Release Notes and History 87

https://gitlab.com/pycqa/flake8/merge_requests/259
https://gitlab.com/pycqa/flake8/issues/156
https://gitlab.com/pycqa/flake8/merge_requests/281
https://gitlab.com/pycqa/flake8/issues/471
https://gitlab.com/pycqa/flake8/merge_requests/261
https://gitlab.com/pycqa/flake8/issues/452
https://gitlab.com/pycqa/flake8/merge_requests/264
https://pre-commit.com/
https://gitlab.com/pycqa/flake8/merge_requests/268
https://gitlab.com/pycqa/flake8/merge_requests/284
https://gitlab.com/pycqa/flake8/merge_requests/269
https://gitlab.com/pycqa/flake8/merge_requests/273
https://gitlab.com/pycqa/flake8/issues/470
https://gitlab.com/pycqa/flake8/issues/470
https://gitlab.com/pycqa/flake8/merge_requests/274
https://gitlab.com/pycqa/flake8/issues/480
https://gitlab.com/pycqa/flake8/milestones/21
https://gitlab.com/pycqa/flake8/issues/381
https://gitlab.com/pycqa/flake8/issues/415
https://gitlab.com/pycqa/flake8/merge_requests/212
https://gitlab.com/pycqa/flake8/merge_requests/230
https://gitlab.com/pycqa/flake8/merge_requests/231
https://gitlab.com/pycqa/flake8/issues/422
https://gitlab.com/pycqa/flake8/merge_requests/239
https://gitlab.com/pycqa/flake8/merge_requests/225
https://gitlab.com/pycqa/flake8/issues/379
https://gitlab.com/pycqa/flake8/merge_requests/211
https://gitlab.com/pycqa/flake8/merge_requests/215
https://gitlab.com/pycqa/flake8/issues/453
https://gitlab.com/pycqa/flake8/merge_requests/219
https://gitlab.com/pycqa/flake8/merge_requests/221
https://gitlab.com/pycqa/flake8/issues/405
https://gitlab.com/pycqa/flake8/merge_requests/227
https://gitlab.com/pycqa/flake8/issues/365
https://gitlab.com/pycqa/flake8/merge_requests/233
https://gitlab.com/pycqa/flake8/merge_requests/222
https://gitlab.com/pycqa/flake8/issues/410
https://gitlab.com/pycqa/flake8/merge_requests/228
https://gitlab.com/pycqa/flake8/merge_requests/244
https://gitlab.com/pycqa/flake8/merge_requests/249
https://gitlab.com/pycqa/flake8/merge_requests/249
https://gitlab.com/pycqa/flake8/merge_requests/250

flake8 Documentation, Release 3.7.6

• Fix inconsistent line endings in FileProcessor.lines when running under python 3.x (See also Git-
Lab#457, GitLab!255)

3.5.0 – 2017-10-23

You can view the 3.5.0 milestone on GitLab for more details.

New Dependency Information

• Allow for PyFlakes 1.6.0 (See also GitLab#359)

• Start using new PyCodestyle checks for bare excepts and ambiguous identifier (See also GitLab#361)

Features

• Print out information about configuring VCS hooks (See also GitLab#335)

• Allow users to develop plugins “local” to a repository without using setuptools. See our documentation on local
plugins for more information. (See also GitLab#357)

Bugs Fixed

• Catch and helpfully report UnicodeDecodeErrors when parsing configuration files. (See also GitLab#358)

3.4.1 – 2017-07-28

You can view the 3.4.1 milestone on GitLab for more details.

• Fix minor regression when users specify only a --select list with items in the enabled/extended select list.
(See also GitLab#354)

3.4.0 – 2017-07-27

You can view the 3.4.0 milestone on GitLab for more details.

• Refine logic around --select and --ignore when combined with the default values for each. (See also
GitLab#318)

• Handle spaces as an alternate separate for error codes, e.g., --ignore 'E123 E234'. (See also Git-
Lab#329)

• Filter out empty select and ignore codes, e.g., --ignore E123,,E234. (See also GitLab#330)

• Specify dependencies appropriately in setup.py (See also Gitlab#341_)

• Fix bug in parsing --quiet and --verbose from config files. (See also GitLab!193)

• Remove unused import of os in the git hook template (See also GitLab!194)

88 Chapter 6. Release Notes and History

https://gitlab.com/pycqa/flake8/issues/457
https://gitlab.com/pycqa/flake8/issues/457
https://gitlab.com/pycqa/flake8/merge_requests/255
https://gitlab.com/pycqa/flake8/milestones/20
https://gitlab.com/pycqa/flake8/issues/359
https://gitlab.com/pycqa/flake8/issues/361
https://gitlab.com/pycqa/flake8/issues/335
https://gitlab.com/pycqa/flake8/issues/357
https://gitlab.com/pycqa/flake8/issues/358
https://gitlab.com/pycqa/flake8/milestones/19
https://gitlab.com/pycqa/flake8/issues/354
https://gitlab.com/pycqa/flake8/milestones/18
https://gitlab.com/pycqa/flake8/issues/318
https://gitlab.com/pycqa/flake8/issues/329
https://gitlab.com/pycqa/flake8/issues/329
https://gitlab.com/pycqa/flake8/issues/330
https://gitlab.com/pycqa/flake8/merge_requests/193
https://gitlab.com/pycqa/flake8/merge_requests/194

flake8 Documentation, Release 3.7.6

3.3.0 – 2017-02-06

You can view the 3.3.0 milestone on GitLab for more details.

• Add support for Python 3.6 (via dependencies). Note Flake8 does not guarantee that all plugins will support
Python 3.6.

• Added unique error codes for all missing PyFlakes messages. (14 new codes, see “Error / Violation Codes”)

• Dramatically improve the performance of Flake8. (See also GitLab!156)

• Display the local file path instead of the temporary file path when using the git hook. (See also GitLab#244)

• Add methods to Report class that will be called when Flake8 starts and finishes processing a file. (See also
GitLab#251)

• Fix problem where hooks should only check *.py files. (See also GitLab#268)

• Fix handling of SyntaxErrors that do not include physical line information. (See also GitLab#279)

• Update upper bound on PyFlakes to allow for PyFlakes 1.5.0. (See also GitLab#290)

• Update setuptools integration to less eagerly deduplicate packages. (See also GitLab#295)

• Force flake8 --version to be repeatable between invocations. (See also GitLab#297)

3.2.1 – 2016-11-21

You can view the 3.2.1 milestone on GitLab for more details.

• Fix subtle bug when deciding whether to report an on-by-default’s violation (See also GitLab#257)

• Fix another bug around SyntaxErrors not being reported at the right column and row (See also GitLab#259 and
GitLab#237 for a related, previously fixed bug)

• Fix regression from 2.x where we run checks against explicitly provided files, even if they don’t match the
filename patterns. (See also GitLab#266)

3.2.0 – 2016-11-14

You can view the 3.2.0 milestone on GitLab for more details.

• Allow for pycodestyle 2.2.0 which fixes a bug in E305 (See also GitLab#256)

3.1.1 – 2016-11-14

You can view the 3.1.1 milestone on GitLab for more details.

• Do not attempt to install/distribute a man file with the Python package; leave this for others to do. (See also
GitLab#254)

• Fix packaging bug where wheel version constraints specified in setup.cfg did not match the constraints in
setup.py. (See also GitLab#255)

6.1. Release Notes and History 89

https://gitlab.com/pycqa/flake8/milestones/16
https://gitlab.com/pycqa/flake8/merge_requests/156
https://gitlab.com/pycqa/flake8/issues/244
https://gitlab.com/pycqa/flake8/issues/251
https://gitlab.com/pycqa/flake8/issues/268
https://gitlab.com/pycqa/flake8/issues/279
https://gitlab.com/pycqa/flake8/issues/290
https://gitlab.com/pycqa/flake8/issues/295
https://gitlab.com/pycqa/flake8/issues/297
https://gitlab.com/pycqa/flake8/milestones/15
https://gitlab.com/pycqa/flake8/issues/257
https://gitlab.com/pycqa/flake8/issues/259
https://gitlab.com/pycqa/flake8/issues/237
https://gitlab.com/pycqa/flake8/issues/266
https://gitlab.com/pycqa/flake8/milestones/14
https://gitlab.com/pycqa/flake8/issues/256
https://gitlab.com/pycqa/flake8/milestones/13
https://gitlab.com/pycqa/flake8/issues/254
https://gitlab.com/pycqa/flake8/issues/255

flake8 Documentation, Release 3.7.6

3.1.0 – 2016-11-14

You can view the 3.1.0 milestone on GitLab for more details.

• Add --bug-report flag to make issue reporters’ lives easier.

• Collect configuration files from the current directory when using our Git hook. (See also GitLab#210, Git-
Lab#218, GitLab#223)

• Avoid unhandled exceptions when dealing with SyntaxErrors. (See also GitLab#214, GitLab#238)

• Exit early if the value for --diff is empty. (See also GitLab#226)

• Handle empty --stdin-display-name values. (See also GitLab#235)

• Properly report the column number of Syntax Errors. We were assuming that all reports of column numbers
were 0-indexed, however, SyntaxErrors report the column number as 1-indexed. This caused us to report a
column number that was 1 past the actual position. Further, when combined with SyntaxErrors that occur at a
newline, this caused the position to be visually off by two. (See also GitLab#237)

• Fix the behaviour of --enable-extensions. Previously, items specified here were still ignored due to the
fact that the off-by-default extension codes were being left in the ignore list. (See also GitLab#239)

• Fix problems around --select and --ignore behaviour that prevented codes that were neither explicitly
selected nor explicitly ignored from being reported. (See also GitLab#242)

• Truly be quiet when the user specifies -q one or more times. Previously, we were showing the if the user
specified -q and --show-source. We have fixed this bug. (See also GitLab#245)

• Add new File Processor attribute, previous_unindented_logical_line to accommodate pycodestyle
2.1.0. (See also GitLab#246)

• When something goes wrong, exit non-zero. (See also GitLab#248, GitLab#209)

• Add --tee as an option to allow use of --output-file and printing to standard out.

• Allow the git plugin to actually be lazy when collecting files.

• Allow for pycodestyle 2.1 series and pyflakes 1.3 series.

3.0.4 – 2016-08-08

• Side-step a Pickling Error when using Flake8 with multiprocessing on Unix systems. (See also GitLab#164)

• Fix an Attribute Error raised when dealing with Invalid Syntax. (See also GitLab#203)

• Fix an unhandled Syntax Error when tokenizing files. (See also GitLab#205)

3.0.3 – 2016-07-30

• Disable --jobs for any version of Python on Windows. (See also this Python bug report)

• Raise exception when entry_point in plugin not callable. This raises an informative error when a plugin fails to
load because its entry_point is not callable, which can happen with a plugin which is buggy or not updated for
the current version of flake8. This is nicer than raising a PicklingError about failing to pickle a module (See
also GitLab#164)

• Fix # noqa comments followed by a : and explanation broken by 3.0.0 (See also GitLab#178)

• Always open our output file in append mode so we do not overwrite log messages. (See also GitLab#193)

90 Chapter 6. Release Notes and History

https://gitlab.com/pycqa/flake8/milestones/12
https://gitlab.com/pycqa/flake8/issues/210
https://gitlab.com/pycqa/flake8/issues/218
https://gitlab.com/pycqa/flake8/issues/218
https://gitlab.com/pycqa/flake8/issues/223
https://gitlab.com/pycqa/flake8/issues/214
https://gitlab.com/pycqa/flake8/issues/238
https://gitlab.com/pycqa/flake8/issues/226
https://gitlab.com/pycqa/flake8/issues/235
https://gitlab.com/pycqa/flake8/issues/237
https://gitlab.com/pycqa/flake8/issues/239
https://gitlab.com/pycqa/flake8/issues/242
https://gitlab.com/pycqa/flake8/issues/245
https://gitlab.com/pycqa/flake8/issues/246
https://gitlab.com/pycqa/flake8/issues/248
https://gitlab.com/pycqa/flake8/issues/209
https://gitlab.com/pycqa/flake8/issues/164
https://gitlab.com/pycqa/flake8/issues/203
https://gitlab.com/pycqa/flake8/issues/205
https://bugs.python.org/issue27649
https://gitlab.com/pycqa/flake8/issues/164
https://gitlab.com/pycqa/flake8/issues/178
https://gitlab.com/pycqa/flake8/issues/193

flake8 Documentation, Release 3.7.6

• When normalizing path values read from configuration, keep in context the directory where the configuration
was found so that relative paths work. (See also GitLab#194)

• Fix issue where users were unable to ignore plugin errors that were on by default. (See also GitLab#195)

• Fix our legacy API StyleGuide’s init_report method to actually override the previous formatter. (See also
GitLab#200)

3.0.2 – 2016-07-26

• Fix local config file discovery. (See also GitLab#181)

• Fix indexing of column numbers. We accidentally were starting column indices at 0 instead of 1.

• Fix regression in handling of errors like E402 that rely on a combination of attributes. (See also GitLab#186)

3.0.1 – 2016-07-25

• Fix regression in handling of # noqa for multiline strings. (See also GitLab#177)

• Fix regression in handling of --output-file when not also using --verbose. (See also GitLab#180)

• Fix regression in handling of --quiet. (See also GitLab#180)

• Fix regression in handling of --statistics. (See also GitLab#180)

3.0.0 – 2016-07-25

• Rewrite our documentation from scratch! (http://flake8.pycqa.org)

• Drop explicit support for Pythons 2.6, 3.2, and 3.3.

• Remove dependence on pep8/pycodestyle for file processing, plugin dispatching, and more. We now control all
of this while keeping backwards compatibility.

• --select and --ignore can now both be specified and try to find the most specific rule from each. For
example, if you do --select E --ignore E123 then we will report everything that starts with E except
for E123. Previously, you would have had to do --ignore E123,F,W which will also still work, but the
former should be far more intuitive.

• Add support for in-line # noqa comments to specify only the error codes to be ignored, e.g., # noqa:
E123,W503

• Add entry-point for formatters as well as a base class that new formatters can inherit from. See the documenta-
tion for more details.

• Add detailed verbose output using the standard library logging module.

• Enhance our usage of optparse for plugin developers by adding new parameters to the add_option that
plugins use to register new options.

• Update --install-hook to require the name of version control system hook you wish to install a Flake8.

• Stop checking sub-directories more than once via the setuptools command

• When passing a file on standard-in, allow the caller to specify --stdin-display-name so the output is
properly formatted

• The Git hook now uses sys.executable to format the shebang line. This allows Flake8 to install a hook
script from a virtualenv that points to that virtualenv’s Flake8 as opposed to a global one (without the virtualenv
being sourced).

6.1. Release Notes and History 91

https://gitlab.com/pycqa/flake8/issues/193
https://gitlab.com/pycqa/flake8/issues/195
https://gitlab.com/pycqa/flake8/issues/200
https://gitlab.com/pycqa/flake8/issues/181
https://gitlab.com/pycqa/flake8/issues/186
https://gitlab.com/pycqa/flake8/issues/177
https://gitlab.com/pycqa/flake8/issues/180
https://gitlab.com/pycqa/flake8/issues/180
https://gitlab.com/pycqa/flake8/issues/180
http://flake8.pycqa.org

flake8 Documentation, Release 3.7.6

• Print results in a deterministic and consistent ordering when used with multiprocessing

• When using --count, the output is no longer written to stderr.

• AST plugins can either be functions or classes and all plugins can now register options so long as there are
callable attributes named as we expect.

• Stop forcibly re-adding .tox, .eggs, and *.eggs to --exclude. Flake8 2.x started always appending
those three patterns to any exclude list (including the default and any user supplied list). Flake8 3 has stopped
adding these in, so you may see errors when upgrading due to these patterns no longer being forcibly excluded
by default if you have your own exclude patterns specified.

To fix this, add the appropriate patterns to your exclude patterns list.

Note: This item was added in November of 2016, as a result of a bug report.

6.1.2 2.x Release Series

2.6.2 - 2016-06-25

• Bug Fix packaging error during release process.

2.6.1 - 2016-06-25

• Bug Update the config files to search for to include setup.cfg and tox.ini. This was broken in 2.5.5 when
we stopped passing config_file to our Style Guide

2.6.0 - 2016-06-15

• Requirements Change Switch to pycodestyle as all future pep8 releases will use that package name

• Improvement Allow for Windows users on select versions of Python to use --jobs and multiprocessing

• Improvement Update bounds on McCabe

• Improvement Update bounds on PyFlakes and blacklist known broken versions

• Improvement Handle new PyFlakes warning with a new error code: F405

2.5.5 - 2016-06-14

• Bug Fix setuptools integration when parsing config files

• Bug Don’t pass the user’s config path as the config_file when creating a StyleGuide

2.5.4 - 2016-02-11

• Bug Missed an attribute rename during the v2.5.3 release.

2.5.3 - 2016-02-11

• Bug Actually parse output_file and enable_extensions from config files

92 Chapter 6. Release Notes and History

flake8 Documentation, Release 3.7.6

2.5.2 - 2016-01-30

• Bug Parse output_file and enable_extensions from config files

• Improvement Raise upper bound on mccabe plugin to allow for version 0.4.0

2.5.1 - 2015-12-08

• Bug Properly look for .flake8 in current working directory (GitLab#103)

• Bug Monkey-patch pep8.stdin_get_value to cache the actual value in stdin. This helps plugins relying
on the function when run with multiprocessing. (GitLab#105, GitLab#107)

2.5.0 - 2015-10-26

• Improvement Raise cap on PyFlakes for Python 3.5 support

• Improvement Avoid deprecation warnings when loading extensions (GitLab#59, GitLab#90)

• Improvement Separate logic to enable “off-by-default” extensions (GitLab#67)

• Bug Properly parse options to setuptools Flake8 command (GitLab!41)

• Bug Fix exceptions when output on stdout is truncated before Flake8 finishes writing the output (GitLab#69)

• Bug Fix error on OS X where Flake8 can no longer acquire or create new semaphores (GitLab#74)

2.4.1 - 2015-05-18

• Bug Do not raise a SystemError unless there were errors in the setuptools command. (GitLab#39, Git-
Lab!23)

• Bug Do not verify dependencies of extensions loaded via entry-points.

• Improvement Blacklist versions of pep8 we know are broken

2.4.0 - 2015-03-07

• Bug Print filenames when using multiprocessing and -q option. (GitLab#31)

• Bug Put upper cap on dependencies. The caps for 2.4.0 are:

– pep8 < 1.6 (Related to GitLab#35)

– mccabe < 0.4

– pyflakes < 0.9

See also GitLab#32

• Bug Files excluded in a config file were not being excluded when flake8 was run from a git hook. (GitHub#2)

• Improvement Print warnings for users who are providing mutually exclusive options to flake8. (GitLab#8,
GitLab!18)

• Feature Allow git hook configuration to live in .git/config. See the updated VCS hooks docs for more
details. (GitLab!20)

6.1. Release Notes and History 93

https://gitlab.com/pycqa/flake8/issues/103
https://gitlab.com/pycqa/flake8/issues/105
https://gitlab.com/pycqa/flake8/issues/107
https://gitlab.com/pycqa/flake8/issues/59
https://gitlab.com/pycqa/flake8/issues/90
https://gitlab.com/pycqa/flake8/issues/67
https://gitlab.com/pycqa/flake8/merge_requests/41
https://gitlab.com/pycqa/flake8/issues/69
https://gitlab.com/pycqa/flake8/issues/74
https://gitlab.com/pycqa/flake8/issues/39
https://gitlab.com/pycqa/flake8/merge_requests/23
https://gitlab.com/pycqa/flake8/merge_requests/23
https://gitlab.com/pycqa/flake8/issues/31
https://gitlab.com/pycqa/flake8/issues/35
https://gitlab.com/pycqa/flake8/issues/32
https://github.com/pycqa/flake8/pull/2
https://gitlab.com/pycqa/flake8/issues/8
https://gitlab.com/pycqa/flake8/merge_requests/18
https://flake8.readthedocs.io/en/latest/user/using-hooks.html
https://gitlab.com/pycqa/flake8/merge_requests/20

flake8 Documentation, Release 3.7.6

2.3.0 - 2015-01-04

• Feature: Add --output-file option to specify a file to write to instead of stdout.

• Bug Fix interleaving of output while using multiprocessing (GitLab#17)

2.2.5 - 2014-10-19

• Flush standard out when using multiprocessing

• Make the check for “# flake8: noqa” more strict

2.2.4 - 2014-10-09

• Fix bugs triggered by turning multiprocessing on by default (again)

Multiprocessing is forcibly disabled in the following cases:

– Passing something in via stdin

– Analyzing a diff

– Using windows

• Fix –install-hook when there are no config files present for pep8 or flake8.

• Fix how the setuptools command parses excludes in config files

• Fix how the git hook determines which files to analyze (Thanks Chris Buccella!)

2.2.3 - 2014-08-25

• Actually turn multiprocessing on by default

2.2.2 - 2014-07-04

• Re-enable multiprocessing by default while fixing the issue Windows users were seeing.

2.2.1 - 2014-06-30

• Turn off multiple jobs by default. To enable automatic use of all CPUs, use --jobs=auto. Fixes #155 and
#154.

2.2.0 - 2014-06-22

• New option doctests to run Pyflakes checks on doctests too

• New option jobs to launch multiple jobs in parallel

• Turn on using multiple jobs by default using the CPU count

• Add support for python -m flake8 on Python 2.7 and Python 3

• Fix Git and Mercurial hooks: issues #88, #133, #148 and #149

• Fix crashes with Python 3.4 by upgrading dependencies

94 Chapter 6. Release Notes and History

https://gitlab.com/pycqa/flake8/issues/17

flake8 Documentation, Release 3.7.6

• Fix traceback when running tests with Python 2.6

• Fix the setuptools command python setup.py flake8 to read the project configuration

2.1.0 - 2013-10-26

• Add FLAKE8_LAZY and FLAKE8_IGNORE environment variable support to git and mercurial hooks

• Force git and mercurial hooks to repsect configuration in setup.cfg

• Only check staged files if that is specified

• Fix hook file permissions

• Fix the git hook on python 3

• Ignore non-python files when running the git hook

• Ignore .tox directories by default

• Flake8 now reports the column number for PyFlakes messages

2.0.0 - 2013-02-23

• Pyflakes errors are prefixed by an F instead of an E

• McCabe complexity warnings are prefixed by a C instead of a W

• Flake8 supports extensions through entry points

• Due to the above support, we require setuptools

• We publish the documentation

• Fixes #13: pep8, pyflakes and mccabe become external dependencies

• Split run.py into main.py, engine.py and hooks.py for better logic

• Expose our parser for our users

• New feature: Install git and hg hooks automagically

• By relying on pyflakes (0.6.1), we also fixed #45 and #35

6.1.3 1.x Release Series

1.7.0 - 2012-12-21

• Fixes part of #35: Exception for no WITHITEM being an attribute of Checker for Python 3.3

• Support stdin

• Incorporate @phd’s builtins pull request

• Fix the git hook

• Update pep8.py to the latest version

1.6.2 - 2012-11-25

• fixed the NameError: global name ‘message’ is not defined (#46)

6.1. Release Notes and History 95

https://flake8.readthedocs.io/

flake8 Documentation, Release 3.7.6

1.6.1 - 2012-11-24

• fixed the mercurial hook, a change from a previous patch was not properly applied

• fixed an assumption about warnings/error messages that caused an exception to be thrown when McCabe is used

1.6 - 2012-11-16

• changed the signatures of the check_file function in flake8/run.py, skip_warning in flake8/util.py and
the check, checkPath functions in flake8/pyflakes.py.

• fix --exclude and --ignore command flags (#14, #19)

• fix the git hook that wasn’t catching files not already added to the index (#29)

• pre-emptively includes the addition to pep8 to ignore certain lines. Add # nopep8 to the end of a line to ignore
it. (#37)

• check_file can now be used without any special prior setup (#21)

• unpacking exceptions will no longer cause an exception (#20)

• fixed crash on non-existent file (#38)

1.5 - 2012-10-13

• fixed the stdin

• make sure mccabe catches the syntax errors as warnings

• pep8 upgrade

• added max_line_length default value

• added Flake8Command and entry points if setuptools is around

• using the setuptools console wrapper when available

1.4 - 2012-07-12

• git_hook: Only check staged changes for compliance

• use pep8 1.2

1.3.1 - 2012-05-19

• fixed support for Python 2.5

1.3 - 2012-03-12

• fixed false W402 warning on exception blocks.

96 Chapter 6. Release Notes and History

flake8 Documentation, Release 3.7.6

1.2 - 2012-02-12

• added a git hook

• now Python 3 compatible

• mccabe and pyflakes have warning codes like pep8 now

1.1 - 2012-02-14

• fixed the value returned by –version

• allow the flake8: header to be more generic

• fixed the “hg hook raises ‘physical lines’” bug

• allow three argument form of raise

• now uses setuptools if available, for ‘develop’ command

1.0 - 2011-11-29

• Deactivates by default the complexity checker

• Introduces the complexity option in the HG hook and the command line.

6.1.4 0.x Release Series

0.9 - 2011-11-09

• update pep8 version to 0.6.1

• mccabe check: gracefully handle compile failure

0.8 - 2011-02-27

• fixed hg hook

• discard unexisting files on hook check

0.7 - 2010-02-18

• Fix pep8 initialization when run through Hg

• Make pep8 short options work when run through the command line

• Skip duplicates when controlling files via Hg

0.6 - 2010-02-15

• Fix the McCabe metric on some loops

6.1. Release Notes and History 97

flake8 Documentation, Release 3.7.6

98 Chapter 6. Release Notes and History

CHAPTER 7

General Indices

• genindex

• Index of Documented Public Modules

• Glossary of terms

99

flake8 Documentation, Release 3.7.6

100 Chapter 7. General Indices

Python Module Index

f
flake8.api.legacy, 33

101

flake8 Documentation, Release 3.7.6

102 Python Module Index

Index

Symbols
–append-config=<config>

flake8 command line option, 21
–benchmark

flake8 command line option, 23
–bug-report

flake8 command line option, 23
–builtins=<builtins>

flake8 command line option, 21
–config=<config>

flake8 command line option, 21
–count

flake8 command line option, 13
–diff

flake8 command line option, 13
–disable-noqa

flake8 command line option, 18
–doctests

flake8 command line option, 22
–enable-extensions=<errors>

flake8 command line option, 19
–exclude-from-doctest=<paths>

flake8 command line option, 22
–exclude=<patterns>

flake8 command line option, 14
–exit-zero

flake8 command line option, 19
–extend-ignore=<errors>

flake8 command line option, 16
–filename=<patterns>

flake8 command line option, 14
–format=<format>

flake8 command line option, 15
–hang-closing

flake8 command line option, 16
–ignore=<errors>

flake8 command line option, 16
–include-in-doctest=<paths>

flake8 command line option, 22

–install-hook=VERSION_CONTROL_SYSTEM
flake8 command line option, 19

–isolated
flake8 command line option, 21

–jobs=<n>
flake8 command line option, 20

–max-complexity=<n>
flake8 command line option, 24

–max-line-length=<n>
flake8 command line option, 17

–output-file=<path>
flake8 command line option, 20

–per-file-ignores=<filename:errors>[<filename:errors>]
flake8 command line option, 17

–select=<errors>
flake8 command line option, 17

–show-source
flake8 command line option, 18

–statistics
flake8 command line option, 19

–stdin-display-name=<display_name>
flake8 command line option, 15

–tee
flake8 command line option, 20

–version
flake8 command line option, 12

-h, –help
flake8 command line option, 13

-q, –quiet
flake8 command line option, 13

-v, –verbose
flake8 command line option, 13

__init__() (flake8.options.config.ConfigFileFinder
method), 75

__init__() (flake8.options.config.MergedConfigParser
method), 76

__init__() (flake8.options.manager.Option method), 73
__init__() (flake8.options.manager.OptionManager

method), 74
__init__() (flake8.plugins.manager.Plugin method), 79

103

flake8 Documentation, Release 3.7.6

__init__() (flake8.plugins.manager.PluginManager
method), 78

__weakref__ (flake8.options.config.ConfigFileFinder at-
tribute), 75

__weakref__ (flake8.options.config.MergedConfigParser
attribute), 76

__weakref__ (flake8.options.manager.OptionManager at-
tribute), 74

A
add_option() (flake8.options.manager.OptionManager

method), 74
after_init() (flake8.formatting.base.BaseFormatter

method), 43
after_init() (flake8.formatting.default.Default method),

70
aggregate_options() (in module

flake8.options.aggregator), 73
Application (class in flake8.main.application), 66
args (flake8.main.application.Application attribute), 66
ast_plugins (flake8.plugins.manager.Checkers attribute),

80

B
BaseFormatter (class in flake8.formatting.base), 43
beginning() (flake8.formatting.base.BaseFormatter

method), 43
blank_before (flake8.processor.FileProcessor attribute),

63
blank_lines (flake8.processor.FileProcessor attribute), 63
build_ast() (flake8.processor.FileProcessor method), 63
build_logical_line() (flake8.processor.FileProcessor

method), 63
build_logical_line_tokens()

(flake8.processor.FileProcessor method),
63

C
can_run_multiprocessing_on_windows() (in module

flake8.utils), 82
catastrophic_failure (flake8.main.application.Application

attribute), 66
check, 4
check_files() (flake8.api.legacy.StyleGuide method), 32
check_physical_eol() (flake8.checker.FileChecker

method), 61
check_physical_error() (flake8.processor.FileProcessor

method), 63
check_plugins (flake8.main.application.Application at-

tribute), 66
checker_state (flake8.processor.FileProcessor attribute),

63
Checkers (class in flake8.plugins.manager), 80

checks_expecting() (flake8.plugins.manager.Checkers
method), 80

class, 4
cli_config() (flake8.options.config.ConfigFileFinder

method), 75
config_finder (flake8.main.application.Application

attribute), 66
config_finder (flake8.options.config.MergedConfigParser

attribute), 76
config_options (flake8.options.config.MergedConfigParser

attribute), 76
ConfigFileFinder (class in flake8.options.config), 75
count_parentheses() (in module flake8.processor), 65

D
Default (class in flake8.formatting.default), 70
delete_first_token() (flake8.processor.FileProcessor

method), 63
disable() (flake8.plugins.manager.Plugin method), 79

E
enable() (flake8.plugins.manager.Plugin method), 79
end_time (flake8.main.application.Application attribute),

66
error, 4
error class, 4
error code, 4
excluded() (flake8.api.legacy.StyleGuide method), 32
execute() (flake8.plugins.manager.Plugin method), 79
exit() (flake8.main.application.Application method), 66
expand_indent() (in module flake8.processor), 65
extend_default_ignore() (flake8.options.manager.OptionManager

method), 74
extend_default_select() (flake8.options.manager.OptionManager

method), 75

F
file_checker_manager (flake8.main.application.Application

attribute), 66
file_tokens (flake8.processor.FileProcessor attribute), 63
FileChecker (class in flake8.checker), 61
filename (flake8.formatting.base.BaseFormatter at-

tribute), 43
filenames_from() (in module flake8.utils), 83
FileProcessor (class in flake8.processor), 62
find_plugins() (flake8.main.application.Application

method), 66
finished() (flake8.formatting.base.BaseFormatter

method), 43
flake8 command line option

–append-config=<config>, 21
–benchmark, 23
–bug-report, 23
–builtins=<builtins>, 21

104 Index

flake8 Documentation, Release 3.7.6

–config=<config>, 21
–count, 13
–diff, 13
–disable-noqa, 18
–doctests, 22
–enable-extensions=<errors>, 19
–exclude-from-doctest=<paths>, 22
–exclude=<patterns>, 14
–exit-zero, 19
–extend-ignore=<errors>, 16
–filename=<patterns>, 14
–format=<format>, 15
–hang-closing, 16
–ignore=<errors>, 16
–include-in-doctest=<paths>, 22
–install-hook=VERSION_CONTROL_SYSTEM,

19
–isolated, 21
–jobs=<n>, 20
–max-complexity=<n>, 24
–max-line-length=<n>, 17
–output-file=<path>, 20
–per-file-ignores=<filename:errors>[<file-

name:errors>], 17
–select=<errors>, 17
–show-source, 18
–statistics, 19
–stdin-display-name=<display_name>, 15
–tee, 20
–version, 12
-h, –help, 13
-q, –quiet, 13
-v, –verbose, 13

flake8.api.legacy (module), 33
fnmatch() (in module flake8.utils), 83
format() (flake8.formatting.base.BaseFormatter method),

43
format_plugin() (flake8.options.manager.OptionManager

static method), 75
formatter, 4
formatter (flake8.main.application.Application attribute),

66
formatter_for() (flake8.main.application.Application

method), 67
formatting_plugins (flake8.main.application.Application

attribute), 67

G
generate_epilog() (flake8.options.manager.OptionManager

method), 75
generate_possible_local_files()

(flake8.options.config.ConfigFileFinder
method), 75

generate_tokens() (flake8.processor.FileProcessor
method), 63

generate_versions() (flake8.options.manager.OptionManager
method), 75

get() (flake8.plugins.manager.PluginTypeManager
method), 80

get_statistics() (flake8.api.legacy.Report method), 32
get_style_guide() (in module flake8.api.legacy), 33
GETBOOL_ACTIONS (flake8.options.config.MergedConfigParser

attribute), 76
GETINT_TYPES (flake8.options.config.MergedConfigParser

attribute), 76
group() (flake8.plugins.manager.Plugin method), 79
guide (flake8.main.application.Application attribute), 67

H
handle() (flake8.formatting.base.BaseFormatter method),

43
handle_newline() (flake8.checker.FileChecker method),

61
hang_closing (flake8.processor.FileProcessor attribute),

63

I
indent_char (flake8.processor.FileProcessor attribute), 63
indent_level (flake8.processor.FileProcessor attribute), 63
init_report() (flake8.api.legacy.StyleGuide method), 32
initialize() (flake8.main.application.Application method),

67
input_file() (flake8.api.legacy.StyleGuide method), 32
inside_multiline() (flake8.processor.FileProcessor

method), 63
is_configured_by() (flake8.options.config.MergedConfigParser

method), 76
is_eol_token() (in module flake8.processor), 65
is_in_a_group() (flake8.plugins.manager.Plugin method),

79
is_multiline_string() (in module flake8.processor), 65
is_path_excluded() (flake8.checker.Manager method), 61
is_using_stdin() (in module flake8.utils), 82
is_windows() (in module flake8.utils), 82

K
keyword_arguments_for()

(flake8.processor.FileProcessor method),
63

L
line_for() (flake8.processor.FileProcessor method), 64
line_number (flake8.processor.FileProcessor attribute),

64
load_plugin() (flake8.plugins.manager.Plugin method),

79

Index 105

flake8 Documentation, Release 3.7.6

load_plugins() (flake8.plugins.manager.PluginTypeManager
method), 80

local_config_files() (flake8.options.config.ConfigFileFinder
method), 76

local_configs() (flake8.options.config.ConfigFileFinder
method), 76

local_configs_with_files()
(flake8.options.config.ConfigFileFinder
method), 76

local_plugins (flake8.main.application.Application
attribute), 67

log_token() (in module flake8.processor), 65
logical_line (flake8.processor.FileProcessor attribute), 64
logical_line_plugins (flake8.plugins.manager.Checkers

attribute), 81

M
main() (in module flake8.main.cli), 66
make_checkers() (flake8.checker.Manager method), 62
make_config_finder() (flake8.main.application.Application

method), 67
make_file_checker_manager()

(flake8.main.application.Application method),
67

make_formatter() (flake8.main.application.Application
method), 67

make_guide() (flake8.main.application.Application
method), 67

Manager (class in flake8.checker), 61
map() (flake8.plugins.manager.PluginManager method),

78
max_doc_length (flake8.processor.FileProcessor at-

tribute), 64
max_line_length (flake8.processor.FileProcessor at-

tribute), 64
mccabe, 4
merge_user_and_local_config()

(flake8.options.config.MergedConfigParser
method), 76

MergedConfigParser (class in flake8.options.config), 76
monkey_patch() (in module flake8_polyfill.stdin), 47
multiline (flake8.processor.FileProcessor attribute), 64
mutate_string() (in module flake8.processor), 65

N
names (flake8.plugins.manager.PluginTypeManager at-

tribute), 80
newline (flake8.formatting.base.BaseFormatter attribute),

43
next_line() (flake8.processor.FileProcessor method), 64
next_logical_line() (flake8.processor.FileProcessor

method), 64
noqa (flake8.processor.FileProcessor attribute), 64
normalize() (flake8.options.manager.Option method), 74

normalize_path() (in module flake8.utils), 82
normalize_paths() (in module flake8.utils), 82

O
off_by_default (flake8.plugins.manager.Plugin attribute),

79
Option (class in flake8.options.manager), 73
option_manager (flake8.main.application.Application at-

tribute), 67
option_manager (flake8.options.config.MergedConfigParser

attribute), 77
OptionManager (class in flake8.options.manager), 74
options (flake8.api.legacy.StyleGuide attribute), 33
options (flake8.formatting.base.BaseFormatter attribute),

43
options (flake8.main.application.Application attribute),

67
output_fd (flake8.formatting.base.BaseFormatter at-

tribute), 43

P
parameter_names (flake8.plugins.manager.Plugin at-

tribute), 79
parameters (flake8.plugins.manager.Plugin attribute), 79
parameters_for() (in module flake8.utils), 83
parse() (flake8.options.config.MergedConfigParser

method), 77
parse_args() (flake8.options.manager.OptionManager

method), 75
parse_cli_config() (flake8.options.config.MergedConfigParser

method), 77
parse_comma_separated_list() (in module flake8.utils),

81
parse_configuration_and_cli()

(flake8.main.application.Application method),
67

parse_known_args() (flake8.options.manager.OptionManager
method), 75

parse_local_config() (flake8.options.config.MergedConfigParser
method), 77

parse_preliminary_options_and_args()
(flake8.main.application.Application method),
67

parse_unified_diff() (in module flake8.utils), 84
parse_user_config() (flake8.options.config.MergedConfigParser

method), 77
parsed_diff (flake8.main.application.Application at-

tribute), 67
paths (flake8.api.legacy.StyleGuide attribute), 33
physical_line_plugins (flake8.plugins.manager.Checkers

attribute), 81
plugin, 4
Plugin (class in flake8.plugins.manager), 79
plugin (flake8.plugins.manager.Plugin attribute), 79

106 Index

flake8 Documentation, Release 3.7.6

plugin_name (flake8.plugins.manager.Plugin attribute),
80

PluginManager (class in flake8.plugins.manager), 78
plugins (flake8.plugins.manager.PluginTypeManager at-

tribute), 80
PluginTypeManager (class in flake8.plugins.manager), 80
prelim_args (flake8.main.application.Application at-

tribute), 67
prelim_opts (flake8.main.application.Application at-

tribute), 67
previous_indent_level (flake8.processor.FileProcessor at-

tribute), 64
previous_logical (flake8.processor.FileProcessor at-

tribute), 64
previous_unindented_logical_line

(flake8.processor.FileProcessor attribute),
64

process_tokens() (flake8.checker.FileChecker method),
61

program (flake8.main.application.Application attribute),
67

program_name (flake8.options.config.MergedConfigParser
attribute), 77

provide_options() (flake8.plugins.manager.Plugin
method), 80

provide_options() (flake8.plugins.manager.PluginTypeManager
method), 80

pycodestyle, 4
pyflakes, 4
Pylint (class in flake8.formatting.default), 70
Python Enhancement Proposals

PEP 257, 29
PEP 8, 4

R
read_lines() (flake8.processor.FileProcessor method), 64
read_lines_from_filename()

(flake8.processor.FileProcessor method),
64

read_lines_from_stdin() (flake8.processor.FileProcessor
method), 64

register() (in module flake8_polyfill.options), 46
register_default_options() (in module

flake8.main.options), 68
register_options() (flake8.plugins.manager.Checkers

method), 81
register_options() (flake8.plugins.manager.Plugin

method), 80
register_options() (flake8.plugins.manager.PluginTypeManager

method), 80
register_plugin() (flake8.options.manager.OptionManager

method), 75
register_plugin_options()

(flake8.main.application.Application method),

68
register_plugin_versions()

(flake8.plugins.manager.PluginTypeManager
method), 80

remove_from_default_ignore()
(flake8.options.manager.OptionManager
method), 75

Report (class in flake8.api.legacy), 33
report() (flake8.checker.FileChecker method), 61
report() (flake8.checker.Manager method), 62
report() (flake8.main.application.Application method), 68
report_benchmarks() (flake8.main.application.Application

method), 68
report_errors() (flake8.main.application.Application

method), 68
report_statistics() (flake8.main.application.Application

method), 68
ReportFormatters (class in flake8.plugins.manager), 81
reset_blank_before() (flake8.processor.FileProcessor

method), 64
result_count (flake8.main.application.Application at-

tribute), 68
run() (flake8.checker.Manager method), 62
run() (flake8.main.application.Application method), 68
run_ast_checks() (flake8.checker.FileChecker method),

61
run_check() (flake8.checker.FileChecker method), 61
run_checks() (flake8.checker.FileChecker method), 61
run_checks() (flake8.main.application.Application

method), 68
run_logical_checks() (flake8.checker.FileChecker

method), 61
run_parallel() (flake8.checker.Manager method), 62
run_physical_checks() (flake8.checker.FileChecker

method), 61
run_serial() (flake8.checker.Manager method), 62
running_against_diff (flake8.main.application.Application

attribute), 68

S
should_ignore_file() (flake8.processor.FileProcessor

method), 64
show_benchmarks() (flake8.formatting.base.BaseFormatter

method), 43
show_source() (flake8.formatting.base.BaseFormatter

method), 43
show_statistics() (flake8.formatting.base.BaseFormatter

method), 44
split_line() (flake8.processor.FileProcessor method), 64
start() (flake8.checker.Manager method), 62
start() (flake8.formatting.base.BaseFormatter method), 44
start_time (flake8.main.application.Application attribute),

68
statistics (flake8.processor.FileProcessor attribute), 64

Index 107

flake8 Documentation, Release 3.7.6

stdin_get_value() (in module flake8.utils), 82
stop() (flake8.checker.Manager method), 62
stop() (flake8.formatting.base.BaseFormatter method), 44
strip_utf_bom() (flake8.processor.FileProcessor method),

65
StyleGuide (class in flake8.api.legacy), 33

T
to_dictionary() (flake8.plugins.manager.Checkers

method), 81
to_dictionary() (flake8.plugins.manager.Plugin method),

80
to_optparse() (flake8.options.manager.Option method),

74
token_is_newline() (in module flake8.processor), 66
tokens (flake8.processor.FileProcessor attribute), 65
total_errors (flake8.api.legacy.Report attribute), 33
total_lines (flake8.processor.FileProcessor attribute), 65
total_result_count (flake8.main.application.Application

attribute), 68

U
update_checker_state_for()

(flake8.processor.FileProcessor method),
65

update_state() (flake8.processor.FileProcessor method),
65

update_version_string() (flake8.options.manager.OptionManager
method), 75

user_config() (flake8.options.config.ConfigFileFinder
method), 76

user_config_file() (flake8.options.config.ConfigFileFinder
method), 76

V
verbose (flake8.processor.FileProcessor attribute), 65
version (flake8.main.application.Application attribute),

68
version (flake8.plugins.manager.Plugin attribute), 80
versions() (flake8.plugins.manager.PluginManager

method), 79
violation, 4
visited_new_blank_line() (flake8.processor.FileProcessor

method), 65

W
warning, 4
write() (flake8.formatting.base.BaseFormatter method),

44

108 Index

	Quickstart
	Installation
	Using Flake8

	FAQ and Glossary
	Frequently Asked Questions
	Glossary of Terms Used in Flake8 Documentation

	User Guide
	Using Flake8
	flake8

	Plugin Developer Guide
	Writing Plugins for Flake8

	Contributor Guide
	Exploring Flake8’s Internals

	Release Notes and History
	Release Notes and History

	General Indices
	Python Module Index

