

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	flake8 3.0.0b1 documentation

Flake8: Your Tool For Style Guide Enforcement

Quickstart

Installation

To install Flake8, open an interactive shell and run:

python<version> -m pip install flake8

If you want Flake8 to be installed for your default Python installation, you
can instead use:

python -m pip install flake8

Note

It is very important to install Flake8 on the correct version of
Python for your needs. If you want Flake8 to properly parse new language
features in Python 3.5 (for example), you need it to be installed on 3.5
for Flake8 to understand those features. In many ways, Flake8 is tied to
the version of Python on which it runs.

Using Flake8

To start using Flake8, open an interactive shell and run:

flake8 path/to/code/to/check.py
or
flake8 path/to/code/

Note

If you have installed Flake8 on a particular version of Python (or on
several versions), it may be best to instead run python<version> -m
flake8.

If you only want to see the instances of a specific warning or error, you can
select that error like so:

flake8 --select E123,W503 path/to/code/

Alternatively, if you want to ignore only one specific warning or error:

flake8 --ignore E24,W504 path/to/code/

Please read our user guide for more information about how to use and configure
Flake8.

FAQ and Glossary

	Frequently Asked Questions
	When is Flake8 released?

	How can I help Flake8 release faster?

	What is the next version of Flake8?

	Why does Flake8 use ranges for its dependencies?

	Should I file an issue when a new version of a dependency is available?

	Glossary of Terms Used in Flake8 Documentation

User Guide

All users of Flake8 should read this portion of the documentation. This
provides examples and documentation around Flake8‘s assortment of options
and how to specify them on the command-line or in configuration files.

	Using Flake8
	Invoking Flake8

	Configuring Flake8

	Full Listing of Options and Their Descriptions

	Ignoring Errors with Flake8

	Using Plugins For Fun and Profit

	Public Python API

Plugin Developer Guide

If you’re maintaining a plugin for Flake8 or creating a new one, you should
read this section of the documentation. It explains how you can write your
plugins and distribute them to others.

	Writing Plugins for Flake8
	Getting Started

Contributor Guide

If you are reading Flake8‘s source code for fun or looking to contribute,
you should read this portion of the documentation. This is a mix of documenting
the internal-only interfaces Flake8 and documenting reasoning for Flake8’s
design.

	Exploring Flake8’s Internals
	Contributing to Flake8

	Writing Documentation for Flake8

	Releasing Flake8

	How Checks are Run

	Command Line Interface

	Built-in Formatters

	Option and Configuration Handling

	Plugin Handling

	Utility Functions

Release Notes and History

	Release Notes and History
	3.0.0b1 – 2016-06-25

	2.5.5 - 2016-06-14

	2.5.4 - 2016-02-11

	2.5.3 - 2016-02-11

	2.5.2 - 2016-01-30

	2.5.1 - 2015-12-08

	2.5.0 - 2015-10-26

	2.4.1 - 2015-05-18

	2.4.0 - 2015-03-07

	2.3.0 - 2015-01-04

	2.2.5 - 2014-10-19

	2.2.4 - 2014-10-09

	2.2.3 - 2014-08-25

	2.2.2 - 2014-07-04

	2.2.1 - 2014-06-30

	2.2.0 - 2014-06-22

	2.1.0 - 2013-10-26

	2.0.0 - 2013-02-23

	1.7.0 - 2012-12-21

	1.6.2 - 2012-11-25

	1.6.1 - 2012-11-24

	1.6 - 2012-11-16

	1.5 - 2012-10-13

	1.4 - 2012-07-12

	1.3.1 - 2012-05-19

	1.3 - 2012-03-12

	1.2 - 2012-02-12

	1.1 - 2012-02-14

	1.0 - 2011-11-29

	0.9 - 2011-11-09

	0.8 - 2011-02-27

	0.7 - 2010-02-18

	0.6 - 2010-02-15

General Indices

	Index

	Index of Documented Public Modules

	Glossary of terms

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

Frequently Asked Questions

When is Flake8 released?

Flake8 is released as necessary. Sometimes there are specific goals and
drives to get to a release. Usually, we release as users report and fix
bugs.

How can I help Flake8 release faster?

Look at the next milestone. If there’s work you can help us complete, that
will help us get to the next milestone. If there’s a show-stopping bug that
needs to be released, let us know but please be kind. Flake8 is developed
and released entirely on volunteer time.

What is the next version of Flake8?

In general we try to use milestones to indicate this. If the last release
on PyPI is 3.1.5 and you see a milestone for 3.2.0 in GitLab, there’s a
good chance that 3.2.0 is the next release.

Why does Flake8 use ranges for its dependencies?

Flake8 uses ranges for mccabe, pyflakes, and pycodestyle because each of
those projects tend to add new checks in minor releases. It has been an
implicit design goal of Flake8‘s to make the list of error codes stable in
its own minor releases. That way if you install something from the 2.5
series today, you will not find new checks in the same series in a month
from now when you install it again.

Flake8‘s dependencies tend to avoid new checks in patch versions which is
why Flake8 expresses its dependencies roughly as:

pycodestyle >= 2.0.0, < 2.1.0
pyflakes >= 0.8.0, != 1.2.0, != 1.2.1, != 1.2.2, < 1.3.0
mccabe >= 0.5.0, < 0.6.0

This allows those projects to release patch versions that fix bugs and for
Flake8 users to consume those fixes.

Should I file an issue when a new version of a dependency is available?

No. The current Flake8 core team (of one person) is also
a core developer of pycodestyle, pyflakes, and mccabe. They are aware of
these releases.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

Glossary of Terms Used in Flake8 Documentation

	check

	A piece of logic that corresponds to an error code. A check may
be a style check (e.g., check the length of a given line against
the user configured maximum) or a lint check (e.g., checking for
unused imports) or some other check as defined by a plugin.

	class
error class

	A larger grouping of related error codes. For example,
W503 and W504 are two codes related to whitespace. W50
would be the most specific class of codes relating to whitespace.
W would be the warning class that subsumes all whitespace
errors.

	error
error code

	The symbol associated with a specific check. For example,
pycodestyle implements checks that look for whitespace
around binary operators and will either return an error code of
W503 or W504.

	formatter

	A plugin that augments the output of Flake8 when passed
to flake8 --format.

	mccabe

	The project Flake8 depends on to calculate the McCabe complexity
of a unit of code (e.g., a function). This uses the C
class of :term`error code`s.

	plugin

	A package that is typically installed from PyPI to augment the
behaviour of Flake8 either through adding one or more additional
checks or providing additional formatters.

	pycodestyle

	The project Flake8 depends on to provide style enforcement.
pycodestyle implements checks for PEP 8 [https://www.python.org/dev/peps/pep-0008]. This uses the
E and W classes of error codes.

	pyflakes

	The project Flake8 depends on to lint files (check for unused
imports, variables, etc.). This uses the F class of
error codes reported by Flake8.

	warning

	Typically the W class of error codes from pycodestyle.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

Using Flake8

Flake8 can be used in many ways. A few:

	invoked on the command-line

	invoked via Python

	called by Git or Mercurial on or around committing

This guide will cover all of these and the nuances for using Flake8.

Note

This portion of Flake8‘s documentation does not cover installation. See
the Installation section for how to install Flake8.

	Invoking Flake8

	Configuring Flake8
	Configuration Locations

	Full Listing of Options and Their Descriptions

	Ignoring Errors with Flake8
	Changing the Ignore List

	In-line Ignoring Errors

	Ignoring Entire Files

	Using Plugins For Fun and Profit

	Public Python API

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Using Flake8

Invoking Flake8

Once you have installed Flake8, you can begin
using it. Most of the time, you will be able to generically invoke Flake8
like so:

flake8 ...

Where you simply allow the shell running in your terminal to locate Flake8.
In some cases, though, you may have installed Flake8 for multiple versions
of Python (e.g., Python 2.7 and Python 3.5) and you need to call a specific
version. In that case, you will have much better results using:

python2.7 -m flake8

Or

python3.5 -m flake8

Since that will tell the correct version of Python to run Flake8.

Note

Installing Flake8 once will not install it on both Python 2.7 and
Python 3.5. It will only install it for the version of Python that
is running pip.

It is also possible to specify command-line options directly to Flake8:

flake8 --select E123

Or

python<version> -m flake8 --select E123

Note

This is the last time we will show both versions of an invocation.
From now on, we’ll simply use flake8 and assume that the user
knows they can instead use python<version> -m flake8 instead.

It’s also possible to narrow what Flake8 will try to check by specifying
exactly the paths and directories you want it to check. Let’s assume that
we have a directory with python files and sub-directories which have python
files (and may have more sub-directories) called my_project. Then if
we only want errors from files found inside my_project we can do:

flake8 my_project

And if we only want certain errors (e.g., E123) from files in that
directory we can also do:

flake8 --select E123 my_project

If you want to explore more options that can be passed on the command-line,
you can use the --help option:

flake8 --help

And you should see something like:

Usage: flake8 [options] file file ...

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -v, --verbose Print more information about what is happening in
 flake8. This option is repeatable and will increase
 verbosity each time it is repeated.
 -q, --quiet Report only file names, or nothing. This option is
 repeatable.
 --count Print total number of errors and warnings to standard
 error and set the exit code to 1 if total is not
 empty.
 --diff Report changes only within line number ranges in the
 unified diff provided on standard in by the user.
 --exclude=patterns Comma-separated list of files or directories to
 exclude.(Default:
 .svn,CVS,.bzr,.hg,.git,__pycache__,.tox)
 --filename=patterns Only check for filenames matching the patterns in this
 comma-separated list. (Default: *.py)
 --format=format Format errors according to the chosen formatter.
 --hang-closing Hang closing bracket instead of matching indentation
 of opening bracket's line.
 --ignore=errors Comma-separated list of errors and warnings to ignore
 (or skip). For example, ``--ignore=E4,E51,W234``.
 (Default: E121,E123,E126,E226,E24,E704)
 --max-line-length=n Maximum allowed line length for the entirety of this
 run. (Default: 79)
 --select=errors Comma-separated list of errors and warnings to enable.
 For example, ``--select=E4,E51,W234``. (Default:)
 --disable-noqa Disable the effect of "# noqa". This will report
 errors on lines with "# noqa" at the end.
 --show-source Show the source generate each error or warning.
 --statistics Count errors and warnings.
 --enabled-extensions=ENABLED_EXTENSIONS
 Enable plugins and extensions that are otherwise
 disabled by default
 --exit-zero Exit with status code "0" even if there are errors.
 -j JOBS, --jobs=JOBS Number of subprocesses to use to run checks in
 parallel. This is ignored on Windows. The default,
 "auto", will auto-detect the number of processors
 available to use. (Default: auto)
 --output-file=OUTPUT_FILE
 Redirect report to a file.
 --append-config=APPEND_CONFIG
 Provide extra config files to parse in addition to the
 files found by Flake8 by default. These files are the
 last ones read and so they take the highest precedence
 when multiple files provide the same option.
 --config=CONFIG Path to the config file that will be the authoritative
 config source. This will cause Flake8 to ignore all
 other configuration files.
 --isolated Ignore all found configuration files.
 --builtins=BUILTINS define more built-ins, comma separated
 --doctests check syntax of the doctests
 --include-in-doctest=INCLUDE_IN_DOCTEST
 Run doctests only on these files
 --exclude-from-doctest=EXCLUDE_FROM_DOCTEST
 Skip these files when running doctests

Installed plugins: pyflakes: 1.0.0, pep8: 1.7.0

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Using Flake8

Configuring Flake8

Once you have learned how to invoke Flake8, you will soon
want to learn how to configure it so you do not have to specify the same
options every time you use it.

This section will show you how to make

flake8

Remember that you want to specify certain options without writing

flake8 --select E123,W456 --enable-extensions H111

Configuration Locations

Flake8 supports storing its configuration in the following places:

	Your top-level user directory

	In your project in one of setup.cfg, tox.ini, or .flake8.

“User” Configuration

Flake8 allows a user to use “global” configuration file to store preferences.
The user configuration file is expected to be stored somewhere in the user’s
“home” directory.

	On Windows the “home” directory will be something like
C:\\Users\sigmavirus24, a.k.a, ~\.

	On Linux and other Unix like systems (including OS X) we will look in
~/.

Note that Flake8 looks for ~\.flake8 on Windows and ~/.config/flake8
on Linux and other Unix systems.

User configuration files use the same syntax as Project Configuration files.
Keep reading to see that syntax.

Project Configuration

Flake8 is written with the understanding that people organize projects into
sub-directories. Let’s take for example Flake8‘s own project structure

flake8
├── docs
│ ├── build
│ └── source
│ ├── _static
│ ├── _templates
│ ├── dev
│ ├── internal
│ └── user
├── flake8
│ ├── formatting
│ ├── main
│ ├── options
│ └── plugins
└── tests
 ├── fixtures
 │ └── config_files
 ├── integration
 └── unit

In the top-level flake8 directory (which contains docs, flake8,
and tests) there’s also tox.ini and setup.cfg files. In our case,
we keep our Flake8 configuration in tox.ini. Regardless of whether you
keep your config in .flake8, setup.cfg, or tox.ini we expect you
to use INI to configure Flake8 (since each of these files already uses INI
as a format). This means that any Flake8 configuration you wish to set needs
to be in the flake8 section, which means it needs to start like so:

[flake8]

Each command-line option that you want to specify in your config file can
be named in either of two ways:

	Using underscores (_) instead of hyphens (-)

	Simply using hyphens (without the leading hyphens)

Note

Not every Flake8 command-line option can be specified in the
configuration file. See our list of options to
determine which options will be parsed from the configuration files.

Let’s actually look at Flake8‘s own configuration section:

[flake8]
ignore = D203
exclude = .git,__pycache__,docs/source/conf.py,old,build,dist
max-complexity = 10

This is equivalent to:

flake8 --ignore D203 \
 --exclude .git,__pycache__,docs/source/conf.py,old,build,dist \
 --max-complexity 10

In our case, if we wanted to, we could also do

[flake8]
ignore = D203
exclude =
 .git,
 __pycache__,
 docs/source/conf.py,
 old,
 build,
 dist
max-complexity = 10

This would allow us to add comments for why we’re excluding items, e.g.,

[flake8]
ignore = D203
exclude =
 # No need to traverse our git directory
 .git,
 # There's no value in checking cache directories
 __pycache__,
 # The conf file is mostly autogenerated, ignore it
 docs/source/conf.py,
 # The old directory contains Flake8 2.0
 old,
 # This contains our built documentation
 build,
 # This contains builds of flake8 that we don't want to check
 dist
max-complexity = 10

Note

If you’re using Python 2, you will notice that we download the
configparser [https://docs.python.org/3.4/library/configparser.html#module-configparser] backport from PyPI. That backport enables us to
support this behaviour on all supported versions of Python.

Please do not open issues about this dependency to Flake8.

Note

You can also specify --max-complexity as max_complexity = 10.

This is also useful if you have a long list of error codes to ignore. Let’s
look at a portion of OpenStack’s Swift project configuration [https://github.com/openstack/swift/blob/3944d820387f08372c1a29444f4af7d8e6090ae9/tox.ini#L66..L81]:

[flake8]
it's not a bug that we aren't using all of hacking, ignore:
F812: list comprehension redefines ...
H101: Use TODO(NAME)
H202: assertRaises Exception too broad
H233: Python 3.x incompatible use of print operator
H301: one import per line
H306: imports not in alphabetical order (time, os)
H401: docstring should not start with a space
H403: multi line docstrings should end on a new line
H404: multi line docstring should start without a leading new line
H405: multi line docstring summary not separated with an empty line
H501: Do not use self.__dict__ for string formatting
ignore = F812,H101,H202,H233,H301,H306,H401,H403,H404,H405,H501

They use the comments to describe the check but they could also write this as:

[flake8]
it's not a bug that we aren't using all of hacking
ignore =
 # F812: list comprehension redefines ...
 F812,
 # H101: Use TODO(NAME)
 H101,
 # H202: assertRaises Exception too broad
 H202,
 # H233: Python 3.x incompatible use of print operator
 H233,
 # H301: one import per line
 H301,
 # H306: imports not in alphabetical order (time, os)
 H306,
 # H401: docstring should not start with a space
 H401,
 # H403: multi line docstrings should end on a new line
 H403,
 # H404: multi line docstring should start without a leading new line
 H404,
 # H405: multi line docstring summary not separated with an empty line
 H405,
 # H501: Do not use self.__dict__ for string formatting
 H501

Or they could use each comment to describe why they’ve ignored the check.
Flake8 knows how to parse these lists and will appropriatey handle
these situations.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Using Flake8

Full Listing of Options and Their Descriptions

	
--version

	Show Flake8‘s version as well as the versions of all plugins
installed.

Command-line usage:

flake8 --version

This can not be specified in config files.

	
-h, --help

	Show a description of how to use Flake8 and its options.

Command-line usage:

flake8 --help
flake8 -h

This can not be specified in config files.

	
-v, --verbose

	Increase the verbosity of Flake8‘s output. Each time you specify
it, it will print more and more information.

Command-line example:

flake8 -vv

This can be specified in config files.

Example config file usage:

verbose = 2

	
-q, --quiet

	Decrease the verbosity of Flake8‘s output. Each time you specify it,
it will print less and less information.

Command-line example:

flake8 -q

This can be specified in config files.

Example config file usage:

quiet = 1

	
--count

	Print the total number of errors.

Command-line example:

flake8 --count dir/

This can be specified in config files.

Example config file usage:

count = True

	
--diff

	Use the unified diff provided on standard in to only check the modified
files and report errors included in the diff.

Command-line example:

git diff -u | flake8 --diff

This can not be specified in config files.

	
--exclude=<patterns>

	Provide a comma-separated list of glob patterns to exclude from checks.

This defaults to: .svn,CVS,.bzr,.hg,.git,__pycache__,.tox

Example patterns:

	*.pyc will match any file that ends with .pyc

	__pycache__ will match any path that has __pycache__ in it

	lib/python will look expand that using os.path.abspath() [https://docs.python.org/3.4/library/os.path.html#os.path.abspath] and
look for matching paths

Command-line example:

flake8 --exclude=*.pyc dir/

This can be specified in config files.

Example config file usage:

exclude =
 .tox,
 __pycache__

	
--filename=<patterns>

	Provide a comma-separate list of glob patterns to include for checks.

This defaults to: *.py

Example patterns:

	*.py will match any file that ends with .py

	__pycache__ will match any path that has __pycache__ in it

	lib/python will look expand that using os.path.abspath() [https://docs.python.org/3.4/library/os.path.html#os.path.abspath] and
look for matching paths

Command-line example:

flake8 --filename=*.py dir/

This can be specified in config files.

Example config file usage:

filename =
 example.py,
 another-example*.py

	
--stdin-display-name=<display_name>

	Provide the name to use to report warnings and errors from code on stdin.

Instead of reporting an error as something like:

stdin:82:73 E501 line too long

You can specify this option to have it report whatever value you want
instead of stdin.

This defaults to: stdin

Command-line example:

cat file.py | flake8 --stdin-display-name=file.py -

This can not be specified in config files.

	
--format=<format>

	Select the formatter used to display errors to the user.

This defaults to: default

By default, there are two formatters available:

	default

	pylint

Other formatters can be installed. Refer to their documentation for the
name to use to select them. Further, users can specify their own format
string. The variables available are:

	code

	col

	path

	row

	text

The default formatter has a format string of:

'%(path)s:%(row)d:%(col)d: %(code)s %(text)s'

Command-line example:

flake8 --format=pylint dir/
flake8 --format='%(path)s::%(row)d,%(col)d::%(code)s::%(text)s' dir/

This can be specified in config files.

Example config file usage:

format=pylint
format=%(path)s::%(row)d,%(col)d::%(code)s::%(text)s

	
--hang-closing

	Toggle whether pycodestyle should enforce matching the indentation of the
opening bracket’s line. When you specify this, it will prefer that you
hang the closing bracket rather than match the indentation.

Command-line example:

flake8 --hang-closing dir/

This can be specified in config files.

Example config file usage:

hang_closing = True
hang-closing = True

	
--ignore=<errors>

	Specify a list of codes to ignore. The list is expected to be
comma-separated, and does not need to specify an error code exactly.
Since Flake8 3.0, this can be combined with --select. See
--select for more information.

For example, if you wish to only ignore W234, then you can specify
that. But if you want to ignore all codes that start with W23 you
need only specify W23 to ignore them. This also works for W2 and
W (for example).

This defaults to: E121,E123,E126,E226,E24,E704

Command-line example:

flake8 --ignore=E121,E123 dir/
flake8 --ignore=E24,E704 dir/

This can be specified in config files.

Example config file usage:

ignore =
 E121,
 E123
ignore = E121,E123

	
--max-line-length=<n>

	Set the maximum length that any line (with some exceptions) may be.

Exceptions include lines that are either strings or comments which are
entirely URLs. For example:

https://some-super-long-domain-name.com/with/some/very/long/path

url = (
 'http://...'
)

This defaults to: 79

Command-line example:

flake8 --max-line-length 99 dir/

This can be specified in config files.

Example config file usage:

max-line-length = 79

	
--select=<errors>

	Specify the list of error codes you wish Flake8 to report. Similarly to
--ignore. You can specify a portion of an error code to get all
that start with that string. For example, you can use E, E4,
E43, and E431.

This defaults to: E,F,W,C

Command-line example:

flake8 --select=E431,E5,W,F dir/
flake8 --select=E,W dir/

This can also be combined with --ignore:

flake8 --select=E --ignore=E432 dir/

This will report all codes that start with E, but ignore E432
specifically. This is more flexibly than the Flake8 2.x and 1.x used
to be.

This can be specified in config files.

Example config file usage:

select =
 E431,
 W,
 F

	
--disable-noqa

	Report all errors, even if it is on the same line as a # NOQA comment.
NOQA can be used to silence messages on specific lines. Sometimes,
users will want to see what errors are being silenced without editing the
file. This option allows you to see all the warnings, errors, etc.
reported.

Command-line example:

flake8 --disable-noqa dir/

This can be specified in config files.

Example config file usage:

disable_noqa = True
disable-noqa = True

	
--show-source

	Print the source code generating the error/warning in question.

Command-line example:

flake8 --show-source dir/

This can be specified in config files.

Example config file usage:

show_source = True
show-source = True

	
--statistics

	Count the number of occurrences of each error/warning code and
print a report.

Command-line example:

flake8 --statistics

This can be specified in config files.

Example config file usage:

statistics = True

	
--enable-extensions=<errors>

	Enable off-by-default extensions.

Plugins to Flake8 have the option of registering themselves as
off-by-default. These plugins effectively add themselves to the
default ignore list.

Command-line example:

flake8 --enable-extensions=H111 dir/

This can be specified in config files.

Example config file usage:

enable-extensions =
 H111,
 G123
enable_extensions =
 H111,
 G123

	
--exit-zero

	Force Flake8 to use the exit status code 0 even if there are errors.

By default Flake8 will exit with a non-zero integer if there are errors.

Command-line example:

flake8 --exit-zero dir/

This can not be specified in config files.

	
--install-hook=VERSION_CONTROL_SYSTEM

	Install a hook for your version control system that is executed before
or during commit.

The available options are:

	git

	mercurial

Command-line usage:

flake8 --install-hook=git
flake8 --install-hook=mercurial

This can not be specified in config files.

	
--jobs=<n>

	Specify the number of subprocesses that Flake8 will use to run checks in
parallel.

Note

This option is ignored on Windows because multiprocessing [https://docs.python.org/3.4/library/multiprocessing.html#module-multiprocessing] does
not support Windows across all supported versions of Python.

This defaults to: auto

The default behaviour will use the number of CPUs on your machine as
reported by multiprocessing.cpu_count() [https://docs.python.org/3.4/library/multiprocessing.html#multiprocessing.cpu_count].

Command-line example:

flake8 --jobs=8 dir/

This can be specified in config files.

Example config file usage:

jobs = 8

	
--output-file=<path>

	Redirect all output to the specified file.

Command-line example:

flake8 --output-file=output.txt dir/
flake8 -vv --output-file=output.txt dir/

This can be specified in config files.

Example config file usage:

output-file = output.txt
output_file = output.txt

	
--append-config=<config>

	Provide extra config files to parse in after and in addition to the files
that Flake8 found on its own. Since these files are the last ones read
into the Configuration Parser, so it has the highest precedence if it
provides an option specified in another config file.

Command-line example:

flake8 --append-config=my-extra-config.ini dir/

This can not be specified in config files.

	
--config=<config>

	Provide a path to a config file that will be the only config file read and
used. This will cause Flake8 to ignore all other config files that
exist.

Command-line example:

flake8 --config=my-only-config.ini dir/

This can not be specified in config files.

	
--isolated

	Ignore any config files and use Flake8 as if there were no config files
found.

Command-line example:

flake8 --isolated dir/

This can not be specified in config files.

	
--builtins=<builtins>

	Provide a custom list of builtin functions, objects, names, etc.

This allows you to let pyflakes know about builtins that it may
not immediately recognize so it does not report warnings for using
an undefined name.

This is registered by the default PyFlakes plugin.

Command-line example:

flake8 --builtins=_,_LE,_LW dir/

This can be specified in config files.

Example config file usage:

builtins =
 _,
 _LE,
 _LW

	
--doctests

	Enable PyFlakes syntax checking of doctests in docstrings.

This is registered by the default PyFlakes plugin.

Command-line example:

flake8 --doctests dir/

This can be specified in config files.

Example config file usage:

doctests = True

	
--include-in-doctest=<paths>

	Specify which files are checked by PyFlakes for doctest syntax.

This is registered by the default PyFlakes plugin.

Command-line example:

flake8 --include-in-doctest=dir/subdir/file.py,dir/other/file.py dir/

This can be specified in config files.

Example config file usage:

include-in-doctest =
 dir/subdir/file.py,
 dir/other/file.py
include_in_doctest =
 dir/subdir/file.py,
 dir/other/file.py

	
--exclude-from-doctest=<paths>

	Specify which files are not to be checked by PyFlakes for doctest syntax.

This is registered by the default PyFlakes plugin.

Command-line example:

flake8 --exclude-in-doctest=dir/subdir/file.py,dir/other/file.py dir/

This can be specified in config files.

Example config file usage:

exclude-in-doctest =
 dir/subdir/file.py,
 dir/other/file.py
exclude_in_doctest =
 dir/subdir/file.py,
 dir/other/file.py

	
--benchmark

	Collect and print benchmarks for this run of Flake8. This aggregates the
total number of:

	tokens

	physical lines

	logical lines

	files

and the number of elapsed seconds.

Command-line usage:

flake8 --benchmark dir/

This can not be specified in config files.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Using Flake8

Ignoring Errors with Flake8

By default, Flake8 has a list of error codes that it ignores. The list used
by a version of Flake8 may be different than the list used by a different
version. To see the default list, flake8 --help will
show the output with the current default list.

Changing the Ignore List

If we want to change the list of ignored codes for a single run, we can use
flake8 --ignore to specify a comma-separated list of codes for a
specific run on the command-line, e.g.,

flake8 --ignore=E1,E23,W503 path/to/files/ path/to/more/files/

This tells Flake8 to ignore any error codes starting with E1, E23,
or W503 while it is running.

Note

The documentation for flake8 --ignore shows examples for how
to change the ignore list in the configuration file. See also
Configuring Flake8 as well for details about how to use configuration
files.

In-line Ignoring Errors

In some cases, we might not want to ignore an error code (or class of error
codes) for the entirety of our project. Instead, we might want to ignore the
specific error code on a specific line. Let’s take for example a line like

example = lambda: 'example'

Sometimes we genuinely need something this simple. We could instead define
a function like we normally would. Note, in some contexts this distracts from
what is actually happening. In those cases, we can also do:

example = lambda: 'example' # noqa: E731

This will only ignore the error from pycodestyle that checks for lambda
assignments and generates an E731. If there are other errors on the line
then those will be reported.

Note

If we ever want to disable Flake8 respecting # noqa comments, we can
can refer to flake8 --disable-noqa.

If we instead had more than one error that we wished to ignore, we could
list all of the errors with commas separating them:

noqa: E731,E123

Finally, if we have a particularly bad line of code, we can ignore every error
using simply # noqa with nothing after it.

Ignoring Entire Files

Imagine a situation where we are adding Flake8 to a codebase. Let’s further
imagine that with the exception of a few particularly bad files, we can add
Flake8 easily and move on with our lives. There are two ways to ignore the
file:

	By explicitly adding it to our list of excluded paths (see: flake8
--exclude)

	By adding # flake8: noqa to the file

The former is the recommended way of ignoring entire files. By using our
exclude list, we can include it in our configuration file and have one central
place to find what files aren’t included in Flake8 checks. The latter has the
benefit that when we run Flake8 with flake8 --disable-noqa all of
the errors in that file will show up without having to modify our
configuration. Both exist so we can choose which is better for us.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Using Flake8

Using Plugins For Fun and Profit

Flake8 is useful on its own but a lot of Flake8‘s popularity is due to
its extensibility. Our community has developed plugins that augment
Flake8‘s behaviour. Most of these plugins are uploaded to PyPI [https://pypi.io/]. The
developers of these plugins often have some style they wish to enforce.

For example, flake8-docstrings [https://pypi.io/project/flake8-docstrings/] adds a check for PEP 257 [https://www.python.org/dev/peps/pep-0257] style
conformance. Others attempt to enforce consistency, like flake8-future [https://pypi.io/project/flake8-future/].

Note

The accuracy or reliability of these plugins may vary wildly from plugin
to plugin and not all plugins are guaranteed to work with Flake8 3.0.

To install a third-party plugin, make sure that you know which version of
Python (or pip) you used to install Flake8. You can then use the most
appropriate of:

pip install <plugin-name>
pip3 install <plugin-name>
python -m pip install <plugin-name>
python2.7 -m pip install <plugin-name>
python3 -m pip install <plugin-name>
python3.4 -m pip install <plugin-name>
python3.5 -m pip install <plugin-name>

To install the plugin, where <plugin-name> is the package name on PyPI [https://pypi.io/].
To verify installation use:

flake8 --version
python<version> -m flake8 --version

To see the plugin’s name and version in the output.

See also

How to Invoke Flake8

After installation, most plugins immediately start reporting errors.
Check the plugin’s documentation for which error codes it returns and if it
disables any by default.

Note

You can use both flake8 --select and flake8 --ignore
with plugins.

Some plugins register new options, so be sure to check flake8 --help
for new flags and documentation. These plugins may also allow these flags to
be specified in your configuration file. Hopefully, the plugin authors have
documented this for you.

See also

Configuring Flake8

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Using Flake8

Public Python API

Flake8 3.0.0 presently does not have a public, stable Python API.

When it does it will be located in flake8.api and that will
be documented here.

Module containing all public entry-points for Flake8.

This is the only submodule in Flake8 with a guaranteed stable API. All other
submodules are considered internal only and are subject to change.

	
flake8.api.get_style_guide(**kwargs)

	Stub out the only function I’m aware of people using.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

Writing Plugins for Flake8

Since Flake8 2.0, the Flake8 tool has allowed for extensions and custom
plugins. In Flake8 3.0, we’re expanding that ability to customize and
extend and we’re attempting to thoroughly document it. Some of the
documentation in this section may reference third-party documentation to
reduce duplication and to point you, the developer, towards the authoritative
documentation for those pieces.

Getting Started

To get started writing a Flake8 plugin you first need:

	An idea for a plugin

	An available package name on PyPI

	One or more versions of Python installed

	A text editor or IDE of some kind

	An idea of what kind of plugin you want to build:
	Formatter

	Check

Once you’ve gathered these things, you can get started.

All plugins for Flake8 must be registered via entry points [https://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points]. In this
section we cover:

	How to register your plugin so Flake8 can find it

	How to make Flake8 provide your check plugin with information (via
command-line flags, function/class parameters, etc.)

	How to make a formatter plugin

	How to write your check plugin so that it works with Flake8 2.x and 3.x

Plugin Developer Documentation

	Registering a Plugin with Flake8

	Receiving Information For A Check Plugin
	Indicating Desired Data

	Registering Options

	Accessing Parsed Options

	Developing a Formatting Plugin for Flake8
	API Documentation

	Writing Plugins For Flake8 2 and 3
	Parsing Options from Configuration Files

	Parsing Comma-Separated Lists

	Normalizing Values that Are Paths

	Option Handling on Flake8 2 and 3

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Writing Plugins for Flake8

Registering a Plugin with Flake8

To register any kind of plugin with Flake8, you need:

	A way to install the plugin (whether it is packaged on its own or
as part of something else). In this section, we will use a setup.py
written for an example plugin.

	A name for your plugin that will (ideally) be unique.

	A somewhat recent version of setuptools (newer than 0.7.0 but preferably as
recent as you can attain).

Flake8 relies on functionality provided by setuptools called
Entry Points [https://pythonhosted.org/setuptools/pkg_resources.html#entry-points]. These allow any package to register a plugin with Flake8
via that package’s setup.py file.

Let’s presume that we already have our plugin written and it’s in a module
called flake8_example. We might have a setup.py that looks something
like:

from __future__ import with_statement
import setuptools

requires = [
 "flake8 > 3.0.0",
]

flake8_entry_point = # ...

setuptools.setup(
 name="flake8_example",
 license="MIT",
 version="0.1.0",
 description="our extension to flake8",
 author="Me",
 author_email="example@example.com",
 url="https://gitlab.com/me/flake8_example",
 packages=[
 "flake8_example",
],
 install_requires=requires,
 entry_points={
 flake8_entry_point: [
 'X = flake8_example:ExamplePlugin',
],
 },
 classifiers=[
 "Environment :: Console",
 "Intended Audience :: Developers",
 "License :: OSI Approved :: MIT License",
 "Programming Language :: Python",
 "Programming Language :: Python :: 2",
 "Programming Language :: Python :: 3",
 "Topic :: Software Development :: Libraries :: Python Modules",
 "Topic :: Software Development :: Quality Assurance",
],
)

Note specifically these lines:

flake8_entry_point = # ...

setuptools.setup(
 # snip ...
 entry_points={
 flake8_entry_point: [
 'X = flake8_example:ExamplePlugin',
],
 },
 # snip ...
)

We tell setuptools to register our entry point “X” inside the specific
grouping of entry-points that flake8 should look in.

Flake8 presently looks at three groups:

	flake8.extension

	flake8.listen

	flake8.report

If your plugin is one that adds checks to Flake8, you will use
flake8.extension. If your plugin automatically fixes errors in code, you
will use flake8.listen. Finally, if your plugin performs extra report
handling (formatting, filtering, etc.) it will use flake8.report.

If our ExamplePlugin is something that adds checks, our code would look
like:

setuptools.setup(
 # snip ...
 entry_points={
 'flake8.extension': [
 'X = flake8_example:ExamplePlugin',
],
 },
 # snip ...
)

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Writing Plugins for Flake8

Receiving Information For A Check Plugin

Plugins to Flake8 have a great deal of information that they can request
from a FileProcessor instance. Historically,
Flake8 has supported two types of plugins:

	classes that accept parsed abstract syntax trees (ASTs)

	functions that accept a range of arguments

Flake8 now does not distinguish between the two types of plugins. Any plugin
can accept either an AST or a range of arguments. Further, any plugin that has
certain callable attributes can also register options and receive parsed
options.

Indicating Desired Data

Flake8 inspects the plugin’s signature to determine what parameters it
expects using flake8.utils.parameters_for().
flake8.plugins.manager.Plugin.parameters caches the values so that
each plugin makes that fairly expensive call once per plugin. When processing
a file, a plugin can ask for any of the following:

	blank_before

	blank_lines

	checker_state

	indect_char

	indent_level

	line_number

	logical_line

	max_line_length

	multiline

	noqa

	previous_indent_level

	previous_logical

	tokens

	total_lines

	verbose

Alternatively, a plugin can accept tree and filename.
tree will be a parsed abstract syntax tree that will be used by plugins
like PyFlakes and McCabe.

Registering Options

Any plugin that has callable attributes provide_options and
register_options can parse option information and register new options.

Your register_options function should expect to receive an instance of
OptionManager. An OptionManager instance behaves very similarly to
optparse.OptionParser [https://docs.python.org/3.4/library/optparse.html#optparse.OptionParser]. It, however, uses the layer that Flake8 has
developed on top of optparse [https://docs.python.org/3.4/library/optparse.html#module-optparse] to also handle configuration file parsing.
add_option() creates an Option
which accepts the same parameters as optparse [https://docs.python.org/3.4/library/optparse.html#module-optparse] as well as three extra
boolean parameters:

	parse_from_config

The command-line option should also be parsed from config files discovered
by Flake8.

Note

This takes the place of appending strings to a list on the
optparse.OptionParser [https://docs.python.org/3.4/library/optparse.html#optparse.OptionParser].

	comma_separated_list

The value provided to this option is a comma-separated list. After parsing
the value, it should be further broken up into a list. This also allows us
to handle values like:

E123,E124,
E125,
 E126

	normalize_paths

The value provided to this option is a path. It should be normalized to be
an absolute path. This can be combined with comma_separated_list to
allow a comma-separated list of paths.

Each of these options works individually or can be combined. Let’s look at a
couple examples from Flake8. In each example, we will have
option_manager which is an instance of OptionManager.

option_manager.add_option(
 '--max-line-length', type='int', metavar='n',
 default=defaults.MAX_LINE_LENGTH, parse_from_config=True,
 help='Maximum allowed line length for the entirety of this run. '
 '(Default: %default)',
)

Here we are adding the --max-line-length command-line option which is
always an integer and will be parsed from the configuration file. Since we
provide a default, we take advantage of optparse [https://docs.python.org/3.4/library/optparse.html#module-optparse]‘s willingness to
display that in the help text with %default.

option_manager.add_option(
 '--select', metavar='errors', default='',
 parse_from_config=True, comma_separated_list=True,
 help='Comma-separated list of errors and warnings to enable.'
 ' For example, ``--select=E4,E51,W234``. (Default: %default)',
)

In adding the --select command-line option, we’re also indicating to the
OptionManager that we want the value parsed from the config files and parsed
as a comma-separated list.

option_manager.add_option(
 '--exclude', metavar='patterns', default=defaults.EXCLUDE,
 comma_separated_list=True, parse_from_config=True,
 normalize_paths=True,
 help='Comma-separated list of files or directories to exclude.'
 '(Default: %default)',
)

Finally, we show an option that uses all three extra flags. Values from
--exclude will be parsed from the config, converted from a comma-separated
list, and then each item will be normalized.

For information about other parameters to
add_option() refer to the
documentation of optparse [https://docs.python.org/3.4/library/optparse.html#module-optparse].

Accessing Parsed Options

When a plugin has a callable provide_options attribute, Flake8 will call
it and attempt to provide the OptionManager instance, the parsed options
which will be an instance of optparse.Values, and the extra arguments
that were not parsed by the OptionManager. If that fails, we will just pass
the optparse.Values. In other words, your provide_options
callable will have one of the following signatures:

def provide_options(option_manager, options, args):
 pass
or
def provide_options(options):
 pass

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Writing Plugins for Flake8

Developing a Formatting Plugin for Flake8

Flake8 allowed for custom formatting plugins in version
3.0.0. Let’s write a plugin together:

from flake8.formatting import base

class Example(base.BaseFormatter):
 """Flake8's example formatter."""

 pass

We notice, as soon as we start, that we inherit from Flake8‘s
BaseFormatter class. If we follow the
instructions to register a plugin and try to use
our example formatter, e.g., flake8 --format=example then
Flake8 will fail because we did not implement the format method.
Let’s do that next.

class Example(base.BaseFormatter):
 """Flake8's example formatter."""

 def format(self, error):
 return 'Example formatter: {0!r}'.format(error)

With that we’re done. Obviously this isn’t a very useful formatter, but it
should highlight the simplicitly of creating a formatter with Flake8. If we
wanted to instead create a formatter that aggregated the results and returned
XML, JSON, or subunit we could also do that. Flake8 interacts with the
formatter in two ways:

	It creates the formatter and provides it the options parsed from the
configuration files and command-line

	It uses the instance of the formatter and calls handle with the error.

By default flake8.formatting.base.BaseFormatter.handle() simply calls
the format method and then write. Any extra handling you wish to do
for formatting purposes should override the handle method.

API Documentation

	
class flake8.formatting.base.BaseFormatter(options)

	Class defining the formatter interface.

	
options

	The options parsed from both configuration files and the command-line.

	
filename

	If specified by the user, the path to store the results of the run.

	
output_fd

	Initialized when the start() is called. This will be a file
object opened for writing.

	
newline

	The string to add to the end of a line. This is only used when the
output filename has been specified.

	
after_init()

	Initialize the formatter further.

	
format(error)

	Format an error reported by Flake8.

This method must be implemented by subclasses.

	Parameters:	error (flake8.style_guide.Error) – This will be an instance of Error.

	Returns:	The formatted error string.

	Return type:	str [https://docs.python.org/3.4/library/stdtypes.html#str]

	
handle(error)

	Handle an error reported by Flake8.

This defaults to calling format(), show_source(), and
then write(). To extend how errors are handled, override this
method.

	Parameters:	error (flake8.style_guide.Error) – This will be an instance of Error.

	
show_benchmarks(benchmarks)

	Format and print the benchmarks.

	
show_source(error)

	Show the physical line generating the error.

This also adds an indicator for the particular part of the line that
is reported as generating the problem.

	Parameters:	error (flake8.style_guide.Error) – This will be an instance of Error.

	Returns:	The formatted error string if the user wants to show the source.
If the user does not want to show the source, this will return
None.

	Return type:	str [https://docs.python.org/3.4/library/stdtypes.html#str]

	
start()

	Prepare the formatter to receive input.

This defaults to initializing output_fd if filename

	
stop()

	Clean up after reporting is finished.

	
write(line, source)

	Write the line either to the output file or stdout.

This handles deciding whether to write to a file or print to standard
out for subclasses. Override this if you want behaviour that differs
from the default.

	Parameters:	
	line (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The formatted string to print or write.

	source (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The source code that has been formatted and associated with the
line of output.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Writing Plugins for Flake8

Writing Plugins For Flake8 2 and 3

Plugins have existed for Flake8 2.x for a few years. There are a number of
these on PyPI already. While it did not seem reasonable for Flake8 to attempt
to provide a backwards compatible shim for them, we did decide to try to
document the easiest way to write a plugin that’s compatible across both
versions.

Note

If your plugin does not register options, it should Just Work.

The only breaking change in Flake8 3.0 is the fact that we no longer
check the option parser for a list of strings to parse from a config file. On
Flake8 2.x, to have an option parsed from the configuration files that
Flake8 finds and parses you would have to do something like:

parser.add_option('-X', '--example-flag', type='string',
 help='...')
parser.config_options.append('example-flag')

For Flake8 3.0, we have added three arguments to the
add_option() method you will call
on the parser you receive:

	parse_from_config which expects True or False

When True, Flake8 will parse the option from the config files Flake8
finds.

	comma_separated_list which expects True or False

When True, Flake8 will split the string intelligently and handle
extra whitespace. The parsed value will be a list.

	normalize_paths which expects True or False

When True, Flake8 will:

	remove trailing path separators (i.e., os.path.sep)

	return the absolute path for values that have the separator in them

All three of these options can be combined or used separately.

Parsing Options from Configuration Files

The example from Flake8 2.x now looks like:

parser.add_option('-X', '--example-flag', type='string',
 parse_from_config=True,
 help='...')

Parsing Comma-Separated Lists

Now let’s imagine that the option we want to add is expecting a comma-separatd
list of values from the user (e.g., --select E123,W503,F405). Flake8 2.x
often forced users to parse these lists themselves since pep8 special-cased
certain flags and left others on their own. Flake8 3.0 adds
comma_separated_list so that the parsed option is already a list for
plugin authors. When combined with parse_from_config this means that users
can also do something like:

example-flag =
 first,
 second,
 third,
 fourth,
 fifth

And Flake8 will just return the list:

["first", "second", "third", "fourth", "fifth"]

Normalizing Values that Are Paths

Finally, let’s imagine that our new option wants a path or list of paths. To
ensure that these paths are semi-normalized (the way Flake8 2.x used to
work) we need only pass normalize_paths=True. If you have specified
comma_separated_list=True then this will parse the value as a list of
paths that have been normalized. Otherwise, this will parse the value
as a single path.

Option Handling on Flake8 2 and 3

So, in conclusion, we can now write our plugin that relies on registering
options with Flake8 and have it work on Flake8 2.x and 3.x.

option_args = ('-X', '--example-flag')
option_kwargs = {
 'type': 'string',
 'parse_from_config': True,
 'help': '...',
}
try:
 # Flake8 3.x registration
 parser.add_option(*option_args, **option_kwargs)
except TypeError:
 # Flake8 2.x registration
 parse_from_config = option_kwargs.pop('parse_from_config', False)
 parser.add_option(*option_args, **option_kwargs)
 if parse_from_config:
 parser.config_options.append(option_args[-1].lstrip('-'))

Or, you can write a tiny helper function:

def register_opt(parser, *args, **kwargs):
 try:
 # Flake8 3.x registration
 parser.add_option(*args, **kwargs)
 except TypeError:
 # Flake8 2.x registration
 parse_from_config = kwargs.pop('parse_from_config', False)
 parser.add_option(*args, **kwargs)
 if parse_from_config:
 parser.config_options.append(args[-1].lstrip('-'))

@classmethod
def register_options(cls, parser):
 register_opt(parser, '-X', '--example-flag', type='string',
 parse_from_config=True, help='...')

The transition period is admittedly not fantastic, but we believe that this
is a worthwhile change for plugin developers going forward. We also hope to
help with the transition phase for as many plugins as we can manage.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

Exploring Flake8’s Internals

While writing Flake8 3.0, the developers attempted to capture some reasoning
and decision information in internal documentation meant for future developers
and maintaners. Most of this information is unnecessary for users and plugin
developers. Some of it, however, is linked to from the plugin development
documentation.

Keep in mind that not everything will be here and you may need to help pull
information out of the developers’ heads and into these documents. Please
pull gently.

	Contributing to Flake8
	Code of Conduct

	Setting Up A Development Environment

	Filing a Bug

	Requesting a New Feature

	Contributing Documentation

	Contributing Code

	Reviewing and Triaging Issues and Merge Requests

	Writing Documentation for Flake8
	View the docs locally before submitting

	Run the docs linter tests before submitting

	Capitalize Flake8 in prose

	Use the prompt directive for command-line examples

	Wrap lines around 79 characters

	Use two new-lines before new sections

	Surround document titles with equal symbols

	Use the option template for new options

	Use anchors for easy reference linking

	Keep your audience in mind

	Releasing Flake8
	Major Releases

	Minor Releases

	Patch Releases

	Process

	How Checks are Run
	Processing Files

	API Reference

	Command Line Interface
	API Documentation

	Built-in Formatters
	Default Formatter

	Pylint Formatter

	Option and Configuration Handling
	Option Management

	Configuration File Management

	Aggregating Configuration File and Command Line Arguments

	API Documentation

	Plugin Handling
	Plugin Management

	Notifying Listener Plugins

	Default Plugins

	API Documentation

	Utility Functions

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Exploring Flake8’s Internals

Contributing to Flake8

There are many ways to contriubte to Flake8, and we encourage them all:

	contributing bug reports and feature requests

	contributing documenation (and yes that includes this document)

	reviewing and triaging bugs and merge requests

Before you go any further, please allow me to reassure you that I do want
your contribution. If you think your contribution might not be valuable, I
reassure you that any help you can provide is valuable.

Code of Conduct

Flake8 adheres to the Python Code Quality Authority’s Code of Conduct [http://meta.pycqa.org/en/latest/code-of-conduct.html].
Any violations of the Code of Conduct should be reported to Ian Cordasco
(graffatcolmingov [at] gmail [dot] com).

Setting Up A Development Environment

To contribute to Flake8‘s development, you simply need:

	Python (one of the versions we support)

	tox [https://tox.readthedocs.io/]

We suggest installing this like:

pip install --user tox

Or

python<version> -m pip install --user tox

	your favorite editor

Filing a Bug

When filing a bug against Flake8, please fill out the issue template as it
is provided to you by GitLab [https://gitlab.com/pycqa/flake8]. If your bug is in reference to one of the
checks that Flake8 reports by default, please do not report them to Flake8
unless Flake8 is doing something to prevent the check from running or you
have some reason to believe Flake8 is inhibiting the effectiveness of the
check.

Please search for closed and open bug reports before opening new ones.

All bug reports about checks should go to their respective projects:

	Error codes starting with E and W should be reported to
pycodestyle [https://github.com/pycqa/pycodestyle].

	Error codes starting with F should be reported to pyflakes [https://github.com/pyflakes/pyflakes]

	Error codes starting with C should be reported to mccabe [https://github.com/pycqa/mccabe]

Requesting a New Feature

When requesting a new feature in Flake8, please fill out the issue template.
Please also note if there are any existing alternatives to your new feature
either via plugins, or combining command-line options. Please provide example
use cases. For example, do not ask for a feature like this:

I need feature frobulate for my job.

Instead ask:

I need Flake8 to frobulate these files because my team expects them to
frobulated but Flake8 currently does not frobulate them. We tried using
--filename but we could not create a pattern that worked.

The more you explain about why you need a feature, the more likely we are to
understand your needs and help you to the best of our ability.

Contributing Documentation

To contribute to Flake8‘s documentation, you might want to first read a
little about reStructuredText or Sphinx. Flake8 has a guide of best
practices when contributing to our documentation. For the most
part, you should be fine following the structure and style of the rest of
Flake8‘s documentation.

All of Flake8‘s documentation is written in reStructuredText and rendered by
Sphinx. The source (reStructuredText) lives in docs/source/. To build
the documentation the way our Continuous Integration does, run:

tox -e docs

To view the documentation locally, you can also run:

tox -e serve-docs

You can run the latter in a separate terminal and continuously re-run the
documentation generation and refresh the documentation you’re working on.

Note

We lint our documentation just like we lint our code.
You should also run:

tox -e linters

After making changes and before pushing them to ensure that they will
pass our CI tests.

Contributing Code

Flake8 development happens on GitLab [https://gitlab.com/pycqa/flake8]. Code contributions should be
submitted there.

Merge requests should:

	Fix one issue and fix it well

Fix the issue, but do not include extraneous refactoring or code
reformatting. In other words, keep the diff short, but only as short
as is necessary to fix the bug appropriately and add sufficient testing
around it. Long diffs are fine, so long as everything that it includes
is necessary to the purpose of the merge request.

	Have descriptive titles and descriptions

Searching old merge requests is made easier when a merge request is well
described.

	Have commits that follow this style:

Create a short title that is 50 characters long

Ensure the title and commit message use the imperative voice. The
commit and you are doing something. Also, please ensure that the
body of the commit message does not exceed 72 characters.

The body may have multiple paragraphs as necessary.

The final line of the body references the issue appropriately.

Reviewing and Triaging Issues and Merge Requests

When reviewing other people’s merge requests and issues, please be
especially mindful of how the words you choose can be read by someone
else. We strive for professional code reviews that do not insult the
contributor’s intelligence or impugn their character. The code review
should be focused on the code, it’s effectiveness, and whether it is
appropriate for Flake8.

If you have the ability to edit an issue or merge request’s labels, please do
so to make search and prioritization easier.

Flake8 uses milestones with both issues and merge requests. This provides
direction for other contributors about when an issue or merge request will be
delivered.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Exploring Flake8’s Internals

Writing Documentation for Flake8

The maintainers of Flake8 believe strongly in benefit of style guides.
Hence, for all contributors who wish to work on our documentation, we’ve
put together a loose set of guidelines and best practices when adding to
our documentation.

View the docs locally before submitting

You can and should generate the docs locally before you submit a pull request
with your changes. You can build the docs by running:

tox -e docs

From the directory containing the tox.ini file (which also contains the
docs/ directory that this file lives in).

Note

If the docs don’t build locally, they will not build in our continuous
integration system. We will generally not merge any pull request that
fails continuous integration.

Run the docs linter tests before submitting

You should run the doc8 linter job before you’re ready to commit and fix
any errors found.

Capitalize Flake8 in prose

We believe that by capitalizing Flake8 in prose, we can help reduce
confusion between the command-line usage of flake8 and the project.

We also have defined a global replacement |Flake8| that should be used
and will replace each instance with :program:`Flake8`.

Use the prompt directive for command-line examples

When documenting something on the command-line, use the .. prompt::
directive to make it easier for users to copy and paste into their terminal.

Example:

.. prompt:: bash

 flake8 --select E123,W503 dir/
 flake8 --ignore E24,W504 dir

Wrap lines around 79 characters

We use a maximum line-length in our documentation that is similar to the
default in Flake8. Please wrap lines at 79 characters (or less).

Use two new-lines before new sections

After the final paragraph of a section and before the next section title,
use two new-lines to separate them. This makes reading the plain-text
document a little nicer. Sphinx ignores these when rendering so they have
no semantic meaning.

Example:

Section Header
==============

Paragraph.

Next Section Header
===================

Paragraph.

Surround document titles with equal symbols

To indicate the title of a document, we place an equal number of = symbols
on the lines before and after the title. For example:

==================================
 Writing Documentation for Flake8
==================================

Note also that we “center” the title by adding a leading space and having
extra = symbols at the end of those lines.

Use the option template for new options

All of Flake8‘s command-line options are documented in the User Guide. Each
option is documented individually using the .. option:: directive provided
by Sphinx. At the top of the document, in a reStructuredText comment, is a
template that should be copied and pasted into place when documening new
options.

Note

The ordering of the options page is the order that options are printed
in the output of:

flake8 --help

Please insert your option documentation according to that order.

Use anchors for easy reference linking

Use link anchors to allow for other areas of the documentation to use the
:ref: role for intralinking documentation. Example:

.. _use-anchors:

Use anchors for easy reference linking
======================================

Somewhere in this paragraph we will :ref:`reference anchors
<use-anchors>`.

Note

You do not need to provide custom text for the :ref: if the title of
the section has a title that is sufficient.

Keep your audience in mind

Flake8‘s documentation has three distinct (but not separate) audiences:

	Users

	Plugin Developers

	Flake8 Developers and Contributors

At the moment, you’re one of the third group (because you’re contributing
or thinking of contributing).

Consider that most Users aren’t very interested in the internal working of
Flake8. When writing for Users, focus on how to do something or the
behaviour of a certain piece of configuration or invocation.

Plugin developers will only care about the internals of Flake8 as much as
they will have to interact with that. Keep discussions of internal to the
mininmum required.

Finally, Flake8 Developers and Contributors need to know how everything fits
together. We don’t need detail about every line of code, but cogent
explanations and design specifications will help future developers understand
the Hows and Whys of Flake8‘s internal design.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Exploring Flake8’s Internals

Releasing Flake8

There is not much that is hard to find about how Flake8 is released.

	We use major releases (e.g., 2.0.0, 3.0.0, etc.) for big, potentially
backwards incompatible, releases.

	We use minor releases (e.g., 2.1.0, 2.2.0, 3.1.0, 3.2.0, etc.) for
releases that contain features and dependency version changes.

	We use patch releases (e.g., 2.1.1, 2.1.2, 3.0.1, 3.0.10, etc.) for
releases that contain only bug fixes.

In this sense we follow semantic versioning. But we follow it as more of a set
of guidelines. We’re also not perfect, so we may make mistakes, and that’s
fine.

Major Releases

Major releases are often associated with backwards incompatibility. Flake8
hopes to avoid those, but will occasionally need them.

Historically, Flake8 has generated major releases for:

	Unvendoring dependencies (2.0)

	Large scale refactoring (2.0, 3.0)

	Subtly breaking CLI changes (3.0)

	Breaking changes to its plugin interface (3.0)

Major releases can also contain:

	Bug fixes (which may have backwards incompatible solutions)

	New features

	Dependency changes

Minor Releases

Minor releases often have new features in them, which we define roughly as:

	New command-line flags

	New behaviour that does not break backwards compatibility

	New errors detected by dependencies, e.g., by raising the upper limit on
PyFlakes we introduce F405

	Bug fixes

Patch Releases

Patch releases should only ever have bug fixes in them.

We do not update dependency constraints in patch releases. If you do not
install Flake8 from PyPI, there is a chance that your packager is using
different requirements. Some downstream redistributors have been known to
force a new version of PyFlakes, pep8/PyCodestyle, or McCabe into place.
Occasionally this will cause breakage when using Flake8. There is little
we can do to help you in those cases.

Process

To prepare a release, we create a file in docs/source/releases/ named:
{{ release_number }}.rst (e.g., 3.0.0.rst). We note bug fixes,
improvements, and dependency version changes as well as other items of note
for users.

Before releasing, the following tox test environments must pass:

	Python 2.7 (a.k.a., tox -e py27)

	Python 3.4 (a.k.a., tox -e py34)

	Python 3.5 (a.k.a., tox -e py35)

	PyPy (a.k.a., tox -e pypy)

	Linters (a.k.a., tox -e linters)

We tag the most recent commit that passes those items and contains our release
notes.

Finally, we run tox -e release to build source distributions (e.g.,
flake8-3.0.0.tar.gz), universal wheels, and upload them to PyPI with
Twine.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Exploring Flake8’s Internals

How Checks are Run

In Flake8 2.x, Flake8 delegated check running to pep8. In 3.0 Flake8
takes on that responsibility. This has allowed for simpler
handling of the --jobs parameter (using multiprocessing [https://docs.python.org/3.4/library/multiprocessing.html#module-multiprocessing]) and
simplified our fallback if something goes awry with concurency.
At the lowest level we have a FileChecker. Instances of FileChecker are
created for each file to be analyzed by Flake8. Each instance, has a copy
of all of the plugins registered with setuptools in the flake8.extension
entry-point group.

The FileChecker instances are managed by an instance of Manager. The
Manager instance handles creating sub-processes with
multiprocessing [https://docs.python.org/3.4/library/multiprocessing.html#module-multiprocessing] module and falling back to running checks in serial if
an operating system level error arises. When creating FileChecker instances,
the Manager is responsible for determining if a particular file has been
excluded.

Processing Files

Unfortunately, since Flake8 took over check running from pep8/pycodestyle,
it also had to take over parsing and processing files for the checkers
to use. Since it couldn’t reuse pycodestyle’s functionality (since it did not
separate cleanly the processing from check running) that function was isolated
into the FileProcessor class. We moved
several helper functions into the flake8.processor module (see also
Processor Utility Functions).

API Reference

	
class flake8.checker.FileChecker(filename, checks, style_guide)

	Manage running checks for a file and aggregate the results.

	
check_physical_eol(token)

	Run physical checks if and only if it is at the end of the line.

	
handle_comment(token, token_text)

	Handle the logic when encountering a comment token.

	
handle_newline(token_type)

	Handle the logic when encountering a newline token.

	
process_tokens()

	Process tokens and trigger checks.

This can raise a flake8.exceptions.InvalidSyntax exception.
Instead of using this directly, you should use
flake8.checker.FileChecker.run_checks().

	
report(error_code, line_number, column, text)

	Report an error by storing it in the results list.

	
run_ast_checks()

	Run all checks expecting an abstract syntax tree.

	
run_check(plugin, **arguments)

	Run the check in a single plugin.

	
run_checks(results_queue, statistics_queue)

	Run checks against the file.

	
run_logical_checks()

	Run all checks expecting a logical line.

	
run_physical_checks(physical_line)

	Run all checks for a given physical line.

	
class flake8.checker.Manager(style_guide, arguments, checker_plugins)

	Manage the parallelism and checker instances for each plugin and file.

This class will be responsible for the following:

	Determining the parallelism of Flake8, e.g.:
	Do we use multiprocessing [https://docs.python.org/3.4/library/multiprocessing.html#module-multiprocessing] or is it unavailable?

	Do we automatically decide on the number of jobs to use or did the
user provide that?

	Falling back to a serial way of processing files if we run into an
OSError related to multiprocessing [https://docs.python.org/3.4/library/multiprocessing.html#module-multiprocessing]

	Organizing the results of each checker so we can group the output
together and make our output deterministic.

	
is_path_excluded(path)

	Check if a path is excluded.

	Parameters:	path (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Path to check against the exclude patterns.

	Returns:	True if there are exclude patterns and the path matches,
otherwise False.

	Return type:	bool [https://docs.python.org/3.4/library/functions.html#bool]

	
make_checkers(paths=None)

	Create checkers for each file.

	
report()

	Report all of the errors found in the managed file checkers.

This iterates over each of the checkers and reports the errors sorted
by line number.

	Returns:	A tuple of the total results found and the results reported.

	Return type:	tuple(int, int)

	
run()

	Run all the checkers.

This will intelligently decide whether to run the checks in parallel
or whether to run them in serial.

If running the checks in parallel causes a problem (e.g.,
https://gitlab.com/pycqa/flake8/issues/74) this also implements
fallback to serial processing.

	
run_parallel()

	Run the checkers in parallel.

	
run_serial()

	Run the checkers in serial.

	
start(paths=None)

	Start checking files.

	Parameters:	paths (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – Path names to check. This is passed directly to
make_checkers().

	
stop()

	Stop checking files.

	
class flake8.processor.FileProcessor(filename, options, lines=None)

	Processes a file and holdes state.

This processes a file by generating tokens, logical and physical lines,
and AST trees. This also provides a way of passing state about the file
to checks expecting that state. Any public attribute on this object can
be requested by a plugin. The known public attributes are:

	blank_before

	blank_lines

	checker_state

	indect_char

	indent_level

	line_number

	logical_line

	max_line_length

	multiline

	noqa

	previous_indent_level

	previous_logical

	tokens

	total_lines

	verbose

	
build_ast()

	Build an abstract syntax tree from the list of lines.

	
build_logical_line()

	Build a logical line from the current tokens list.

	
build_logical_line_tokens()

	Build the mapping, comments, and logical line lists.

	
check_physical_error(error_code, line)

	Update attributes based on error code and line.

	
delete_first_token()

	Delete the first token in the list of tokens.

	
generate_tokens()

	Tokenize the file and yield the tokens.

	Raises:	flake8.exceptions.InvalidSyntax – If a tokenize.TokenError [https://docs.python.org/3.4/library/tokenize.html#tokenize.TokenError] is raised while generating
tokens.

	
inside_multiline(line_number)

	Context-manager to toggle the multiline attribute.

	
keyword_arguments_for(parameters, arguments=None)

	Generate the keyword arguments for a list of parameters.

	
line_for(line_number)

	Retrieve the physical line at the specified line number.

	
next_line()

	Get the next line from the list.

	
next_logical_line()

	Record the previous logical line.

This also resets the tokens list and the blank_lines count.

	
read_lines()

	Read the lines for this file checker.

	
read_lines_from_filename()

	Read the lines for a file.

	
read_lines_from_stdin()

	Read the lines from standard in.

	
reset_blank_before()

	Reset the blank_before attribute to zero.

	
should_ignore_file()

	Check if # flake8: noqa is in the file to be ignored.

	Returns:	True if a line matches FileProcessor.NOQA_FILE,
otherwise False

	Return type:	bool [https://docs.python.org/3.4/library/functions.html#bool]

	
split_line(token)

	Split a physical line’s line based on new-lines.

This also auto-increments the line number for the caller.

	
strip_utf_bom()

	Strip the UTF bom from the lines of the file.

	
update_checker_state_for(plugin)

	Update the checker_state attribute for the plugin.

	
update_state(mapping)

	Update the indent level based on the logical line mapping.

	
visited_new_blank_line()

	Note that we visited a new blank line.

Utility Functions

	
flake8.processor.count_parentheses(current_parentheses_count, token_text)

	Count the number of parentheses.

	
flake8.processor.expand_indent(line)

	Return the amount of indentation.

Tabs are expanded to the next multiple of 8.

>>> expand_indent(' ')
4
>>> expand_indent('\t')
8
>>> expand_indent(' \t')
8
>>> expand_indent(' \t')
16

	
flake8.processor.is_eol_token(token)

	Check if the token is an end-of-line token.

	
flake8.processor.is_multiline_string(token)

	Check if this is a multiline string.

	
flake8.processor.log_token(log, token)

	Log a token to a provided logging object.

	
flake8.processor.mutate_string(text)

	Replace contents with ‘xxx’ to prevent syntax matching.

>>> mute_string('"abc"')
'"xxx"'
>>> mute_string("'''abc'''")
"'''xxx'''"
>>> mute_string("r'abc'")
"r'xxx'"

	
flake8.processor.token_is_comment(token)

	Check if the token type is a comment.

	
flake8.processor.token_is_newline(token)

	Check if the token type is a newline token type.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Exploring Flake8’s Internals

Command Line Interface

The command line interface of Flake8 is modeled as an application via
Application. When a user runs flake8 at their
command line, main() is run which handles
management of the application.

User input is parsed twice to accomodate logging and verbosity options
passed by the user as early as possible.
This is so as much logging can be produced as possible.

The default Flake8 options are registered by
register_default_options(). Trying to register
these options in plugins will result in errors.

API Documentation

	
flake8.main.cli.main(argv=None)

	Main entry-point for the flake8 command-line tool.

This handles the creation of an instance of Application, runs it,
and then exits the application.

	Parameters:	argv (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – The arguments to be passed to the application for parsing.

	
class flake8.main.application.Application(program='flake8', version='3.0.0b1')

	Abstract our application into a class.

	
exit()

	Handle finalization and exiting the program.

This should be the last thing called on the application instance. It
will check certain options and exit appropriately.

	
find_plugins()

	Find and load the plugins for this application.

If check_plugins, listening_plugins, or
formatting_plugins are None then this method will update
them with the appropriate plugin manager instance. Given the expense
of finding plugins (via pkg_resources) we want this to be
idempotent and so only update those attributes if they are None.

	
initialize(argv)

	Initialize the application to be run.

This finds the plugins, registers their options, and parses the
command-line arguments.

	
make_file_checker_manager()

	Initialize our FileChecker Manager.

	
make_formatter()

	Initialize a formatter based on the parsed options.

	
make_guide()

	Initialize our StyleGuide.

	
make_notifier()

	Initialize our listener Notifier.

	
parse_configuration_and_cli(argv=None)

	Parse configuration files and the CLI options.

	Parameters:	argv (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – Command-line arguments passed in directly.

	
register_plugin_options()

	Register options provided by plugins to our option manager.

	
report_benchmarks()

	Aggregate, calculate, and report benchmarks for this run.

	
report_errors()

	Report all the errors found by flake8 3.0.

This also updates the result_count attribute with the total
number of errors, warnings, and other messages found.

	
run(argv=None)

	Run our application.

This method will also handle KeyboardInterrupt exceptions for the
entirety of the flake8 application. If it sees a KeyboardInterrupt it
will forcibly clean up the Manager.

	
run_checks()

	Run the actual checks with the FileChecker Manager.

This method encapsulates the logic to make a
Manger instance run the checks it is
managing.

	
flake8.main.options.register_default_options(option_manager)

	Register the default options on our OptionManager.

The default options include:

	-v/--verbose

	-q/--quiet

	--count

	--diff

	--exclude

	--filename

	--format

	--hang-closing

	--ignore

	--max-line-length

	--select

	--disable-noqa

	--show-source

	--statistics

	--enable-extensions

	--exit-zero

	-j/--jobs

	--output-file

	--append-config

	--config

	--isolated

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Exploring Flake8’s Internals

Built-in Formatters

By default Flake8 has two formatters built-in, default and pylint.
These correspond to two classes Default and Pylint.

In Flake8 2.0, pep8 handled formatting of errors and also allowed users to
specify an arbitrary format string as a parameter to --format. In order
to allow for this backwards compatibility, Flake8 3.0 made two choices:

	To not limit a user’s choices for --format to the format class names

	To make the default formatter attempt to use the string provided by the
user if it cannot find a formatter with that name.

Default Formatter

The Default continues to use the same default format string as
pep8: '%(path)s:%(row)d:%(col)d: %(code)s %(text)s'.

To provide the default functionality it overrides two methods:

	after_init

	format

The former allows us to inspect the value provided to --format by the
user and alter our own format based on that value. The second simply uses
that format string to format the error.

	
class flake8.formatting.default.Default(options)

	Default formatter for Flake8.

This also handles backwards compatibility for people specifying a custom
format string.

	
after_init()

	Check for a custom format string.

Pylint Formatter

The Pylint simply defines the default Pylint format string from
pep8: '%(path)s:%(row)d: [%(code)s] %(text)s'.

	
class flake8.formatting.default.Pylint(options)

	Pylint formatter for Flake8.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Exploring Flake8’s Internals

Option and Configuration Handling

Option Management

Command-line options are often also set in configuration files for Flake8.
While not all options are meant to be parsed from configuration files, many
default options are also parsed from configuration files as well as
most plugin options.

In Flake8 2, plugins received a optparse.OptionParser [https://docs.python.org/3.4/library/optparse.html#optparse.OptionParser] instance and
called optparse.OptionParser.add_option() [https://docs.python.org/3.4/library/optparse.html#optparse.OptionParser.add_option] to register options. If the
plugin author also wanted to have that option parsed from config files they
also had to do something like:

parser.config_options.append('my_config_option')
parser.config_options.extend(['config_opt1', 'config_opt2'])

This was previously undocumented and led to a lot of confusion about why
registered options were not automatically parsed from configuration files.

Since Flake8 3 was rewritten from scratch, we decided to take a different
approach to configuration file parsing. Instead of needing to know about an
undocumented attribute that pep8 looks for, Flake8 3 now accepts a parameter
to add_option, specifically parse_from_config which is a boolean
value.

Flake8 does this by creating its own abstractions on top of optparse [https://docs.python.org/3.4/library/optparse.html#module-optparse].
The first abstraction is the flake8.options.manager.Option class. The
second is the flake8.options.manager.OptionManager. In fact, we add
three new parameters:

	parse_from_config

	comma_separated_list

	normalize_paths

The last two are not specifically for configuration file handling, but they
do improve that dramatically. We found that there were options that, when
specified in a configuration file, often necessitated being spit
multiple lines and those options were almost always comma-separated. For
example, let’s consider a user’s list of ignored error codes for a project:

[flake8]
ignore =
 # Reasoning
 E111,
 # Reasoning
 E711,
 # Reasoning
 E712,
 # Reasoning
 E121,
 # Reasoning
 E122,
 # Reasoning
 E123,
 # Reasoning
 E131,
 # Reasoning
 E251

It makes sense here to allow users to specify the value this way, but, the
standard libary’s configparser.RawConfigParser [https://docs.python.org/3.4/library/configparser.html#configparser.RawConfigParser] class does returns a
string that looks like

"\nE111, \nE711, \nE712, \nE121, \nE122, \nE123, \nE131, \nE251 "

This means that a typical call to str.split() [https://docs.python.org/3.4/library/stdtypes.html#str.split] with ',' will not be
sufficient here. Telling Flake8 that something is a comma-separated list
(e.g., comma_separated_list=True) will handle this for you. Flake8 will
return:

["E111", "E711", "E712", "E121", "E122", "E123", "E131", "E251"]

Next let’s look at how users might like to specify their exclude list.
Presently OpenStack’s Nova project has this line in their tox.ini [https://github.com/openstack/nova/blob/3eb190c4cfc0eefddac6c2cc1b94a699fb1687f8/tox.ini#L155]:

exclude = .venv,.git,.tox,dist,doc,*openstack/common/*,*lib/python*,*egg,build,tools/xenserver*,releasenotes

We think we can all agree that this would be easier to read like this:

exclude =
 .venv,
 .git,
 .tox,
 dist,
 doc,
 openstack/common/,
 lib/python,
 *egg,
 build,
 tools/xenserver*,
 releasenotes

In this case, since these are actually intended to be paths, we would specify
both comma_separated_list=True and normalize_paths=True because we
want the paths to be provided to us with some consistency (either all absolute
paths or not).

Now let’s look at how this will actually be used. Most plugin developers
will receive an instance of OptionManager so
to ease the transition we kept the same API as the
optparse.OptionParser [https://docs.python.org/3.4/library/optparse.html#optparse.OptionParser] object. The only difference is that
add_option() accepts the three
extra arguments we highlighted above.

Configuration File Management

In Flake8 2, configuration file discovery and management was handled by
pep8. In pep8’s 1.6 release series, it drastically broke how discovery and
merging worked (as a result of trying to improve it). To avoid a dependency
breaking Flake8 again in the future, we have created our own discovery and
management.
As part of managing this ourselves, we decided to change management/discovery
for 3.0.0. We have done the following:

	User files (files stored in a user’s home directory or in the XDG directory
inside their home directory) are the first files read. For example, if the
user has a ~/.flake8 file, we will read that first.

	Project files (files stored in the current directory) are read next and
merged on top of the user file. In other words, configuration in project
files takes precedence over configuration in user files.

	New in 3.0.0 The user can specify --append-config <path-to-file>
repeatedly to include extra configuration files that should be read and
take precedence over user and project files.

	New in 3.0.0 The user can specify --config <path-to-file> to so this
file is the only configuration file used. This is a change from Flake8 2
where pep8 would simply merge this configuration file into the configuration
generated by user and project files (where this takes precedence).

	New in 3.0.0 The user can specify --isolated to disable
configuration via discovered configuration files.

To facilitate the configuration file management, we’ve taken a different
approach to discovery and management of files than pep8. In pep8 1.5, 1.6, and
1.7 configuration discovery and management was centralized in 66 lines of
very terse python [https://github.com/PyCQA/pep8/blob/b8088a2b6bc5b76bece174efad877f764529bc74/pep8.py#L1981..L2047] which was confusing and not very explicit. The terseness
of this function (Flake8‘s authors believe) caused the confusion and
problems with pep8’s 1.6 series. As such, Flake8 has separated out
discovery, management, and merging into a module to make reasoning about each
of these pieces easier and more explicit (as well as easier to test).

Configuration file discovery is managed by the
ConfigFileFinder object. This object needs to
know information about the program’s name, any extra arguments passed to it,
and any configuration files that should be appended to the list of discovered
files. It provides methods for finding the files and similiar methods for
parsing those fles. For example, it provides
local_config_files() to find
known local config files (and append the extra configuration files) and it
also provides local_configs()
to parse those configuration files.

Note

local_config_files also filters out non-existent files.

Configuration file merging and managemnt is controlled by the
MergedConfigParser. This requires the instance
of OptionManager that the program is using,
the list of appended config files, and the list of extra arguments. This
object is currently the sole user of the
ConfigFileFinder object. It appropriately
initializes the object and uses it in each of

	parse_cli_config()

	parse_local_config()

	parse_user_config()

Finally,
merge_user_and_local_config()
takes the user and local configuration files that are parsed by
parse_local_config() and
parse_user_config(). The
main usage of the MergedConfigParser is in
aggregate_options().

Aggregating Configuration File and Command Line Arguments

aggregate_options() accepts an instance of
OptionManager and does the work to parse the
command-line arguments passed by the user necessary for creating an instance
of MergedConfigParser.

After parsing the configuration file, we determine the default ignore list. We
use the defaults from the OptionManager and update those with the parsed
configuration files. Finally we parse the user-provided options one last time
using the option defaults and configuration file values as defaults. The
parser merges on the command-line specified arguments for us so we have our
final, definitive, aggregated options.

API Documentation

	
flake8.options.aggregator.aggregate_options(manager, arglist=None, values=None)

	Aggregate and merge CLI and config file options.

	Parameters:	
	manager (flake8.option.manager.OptionManager) – The instance of the OptionManager that we’re presently using.

	arglist (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – The list of arguments to pass to manager.parse_args. In most cases
this will be None so parse_args uses sys.argv. This is mostly
available to make testing easier.

	values (optparse.Values) – Previously parsed set of parsed options.

	Returns:	Tuple of the parsed options and extra arguments returned by
manager.parse_args.

	Return type:	tuple(optparse.Values, list)

	
class flake8.options.manager.Option(short_option_name=None, long_option_name=None, action=None, default=None, type=None, dest=None, nargs=None, const=None, choices=None, callback=None, callback_args=None, callback_kwargs=None, help=None, metavar=None, parse_from_config=False, comma_separated_list=False, normalize_paths=False)

	Our wrapper around an optparse.Option object to add features.

	
__init__(short_option_name=None, long_option_name=None, action=None, default=None, type=None, dest=None, nargs=None, const=None, choices=None, callback=None, callback_args=None, callback_kwargs=None, help=None, metavar=None, parse_from_config=False, comma_separated_list=False, normalize_paths=False)

	Initialize an Option instance wrapping optparse.Option.

The following are all passed directly through to optparse.

	Parameters:	
	short_option_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The short name of the option (e.g., -x). This will be the
first argument passed to Option.

	long_option_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The long name of the option (e.g., --xtra-long-option). This
will be the second argument passed to Option.

	action (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Any action allowed by optparse [https://docs.python.org/3.4/library/optparse.html#module-optparse].

	default – Default value of the option.

	type – Any type allowed by optparse [https://docs.python.org/3.4/library/optparse.html#module-optparse].

	dest – Attribute name to store parsed option value as.

	nargs – Number of arguments to parse for this option.

	const – Constant value to store on a common destination. Usually used in
conjuntion with action="store_const".

	choices (iterable) – Possible values for the option.

	callback (callable [https://docs.python.org/3.4/library/functions.html#callable]) – Callback used if the action is "callback".

	callback_args (iterable) – Additional positional arguments to the callback callable.

	callback_kwargs (dictionary) – Keyword arguments to the callback callable.

	help (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Help text displayed in the usage information.

	metavar (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name to use instead of the long option name for help text.

The following parameters are for Flake8’s option handling alone.

	Parameters:	
	parse_from_config (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Whether or not this option should be parsed out of config files.

	comma_separated_list (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Whether the option is a comma separated list when parsing from a
config file.

	normalize_paths (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Whether the option is expecting a path or list of paths and should
attempt to normalize the paths to absolute paths.

	
normalize(value)

	Normalize the value based on the option configuration.

	
to_optparse()

	Convert a Flake8 Option to an optparse Option.

	
class flake8.options.manager.OptionManager(prog=None, version=None, usage='%prog [options] file file ...')

	Manage Options and OptionParser while adding post-processing.

	
__init__(prog=None, version=None, usage='%prog [options] file file ...')

	Initialize an instance of an OptionManager.

	Parameters:	
	prog (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name of the actual program (e.g., flake8).

	version (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Version string for the program.

	usage (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Basic usage string used by the OptionParser.

	
__weakref__

	list of weak references to the object (if defined)

	
add_option(*args, **kwargs)

	Create and register a new option.

See parameters for Option for
acceptable arguments to this method.

Note

short_option_name and long_option_name may be specified
positionally as they are with optparse normally.

	
extend_default_ignore(error_codes)

	Extend the default ignore list with the error codes provided.

	Parameters:	error_codes (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – List of strings that are the error/warning codes with which to
extend the default ignore list.

	
static format_plugin(plugin_tuple)

	Convert a plugin tuple into a dictionary mapping name to value.

	
generate_epilog()

	Create an epilog with the version and name of each of plugin.

	
generate_versions(format_str='%(name)s: %(version)s')

	Generate a comma-separated list of versions of plugins.

	
parse_args(args=None, values=None)

	Simple proxy to calling the OptionParser’s parse_args method.

	
register_plugin(name, version)

	Register a plugin relying on the OptionManager.

	Parameters:	
	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the checker itself. This will be the name
attribute of the class or function loaded from the entry-point.

	version (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The version of the checker that we’re using.

	
remove_from_default_ignore(error_codes)

	Remove specified error codes from the default ignore list.

	Parameters:	error_codes (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – List of strings that are the error/warning codes to attempt to
remove from the extended default ignore list.

	
update_version_string()

	Update the flake8 version string.

	
class flake8.options.config.ConfigFileFinder(program_name, args, extra_config_files)

	Encapsulate the logic for finding and reading config files.

	
__init__(program_name, args, extra_config_files)

	Initialize object to find config files.

	Parameters:	
	program_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name of the current program (e.g., flake8).

	args (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – The extra arguments passed on the command-line.

	extra_config_files (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – Extra configuration files specified by the user to read.

	
__weakref__

	list of weak references to the object (if defined)

	
cli_config(files)

	Read and parse the config file specified on the command-line.

	
generate_possible_local_files()

	Find and generate all local config files.

	
local_config_files()

	Find all local config files which actually exist.

Filter results from
generate_possible_local_files() based
on whether the filename exists or not.

	Returns:	List of files that exist that are local project config files with
extra config files appended to that list (which also exist).

	Return type:	[str]

	
local_configs()

	Parse all local config files into one config object.

	
user_config()

	Parse the user config file into a config object.

	
user_config_file()

	Find the user-level config file.

	
class flake8.options.config.MergedConfigParser(option_manager, extra_config_files=None, args=None)

	Encapsulate merging different types of configuration files.

This parses out the options registered that were specified in the
configuration files, handles extra configuration files, and returns
dictionaries with the parsed values.

	
__init__(option_manager, extra_config_files=None, args=None)

	Initialize the MergedConfigParser instance.

	Parameters:	
	option_manager (flake8.option.manager.OptionManager) – Initialized OptionManager.

	extra_config_files (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – List of extra config files to parse.

	Params list args:

		The extra parsed arguments from the command-line.

	
__weakref__

	list of weak references to the object (if defined)

	
is_configured_by(config)

	Check if the specified config parser has an appropriate section.

	
merge_user_and_local_config()

	Merge the parsed user and local configuration files.

	Returns:	Dictionary of the parsed and merged configuration options.

	Return type:	dict [https://docs.python.org/3.4/library/stdtypes.html#dict]

	
parse(cli_config=None, isolated=False)

	Parse and return the local and user config files.

First this copies over the parsed local configuration and then
iterates over the options in the user configuration and sets them if
they were not set by the local configuration file.

	Parameters:	
	cli_config (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Value of –config when specified at the command-line. Overrides
all other config files.

	isolated (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Determines if we should parse configuration files at all or not.
If running in isolated mode, we ignore all configuration files

	Returns:	Dictionary of parsed configuration options

	Return type:	dict [https://docs.python.org/3.4/library/stdtypes.html#dict]

	
parse_cli_config(config_path)

	Parse and return the file specified by –config.

	
parse_local_config()

	Parse and return the local configuration files.

	
parse_user_config()

	Parse and return the user configuration files.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Exploring Flake8’s Internals

Plugin Handling

Plugin Management

Flake8 3.0 added support for two other plugins besides those which define
new checks. It now supports:

	extra checks

	alternative report formatters

	listeners to auto-correct violations of checks

To facilitate this, Flake8 needed a more mature way of managing plugins.
Thus, we developed the PluginManager which accepts a namespace and will load
the plugins for that namespace. A PluginManager creates and manages many
Plugin instances.

A Plugin lazily loads the underlying entry-point provided by setuptools.
The entry-point will be loaded either by calling
load_plugin() or accessing the plugin
attribute. We also use this abstraction to retrieve options that the plugin
wishes to register and parse.

The only public method the PluginManager provides is
map(). This will accept a function
(or other callable) and call it with each plugin as the first parameter.

We build atop the PluginManager with the PluginTypeManager. It is expected that users of
the PluginTypeManager will subclass it and specify the namespace, e.g.,

class ExamplePluginType(flake8.plugin.manager.PluginTypeManager):
 namespace = 'example-plugins'

This provides a few extra methods via the PluginManager‘s map method.

Finally, we create three classes of plugins:

	Checkers

	Listeners

	ReportFormatters

These are used to interact with each of the types of plugins individually.

Note

Our inspiration for our plugin handling comes from the author’s extensive
experience with stevedore.

Notifying Listener Plugins

One of the interesting challenges with allowing plugins to be notified each
time an error or warning is emitted by a checker is finding listeners quickly
and efficiently. It makes sense to allow a listener to listen for a certain
class of warnings or just a specific warning. Hence, we need to allow all
plugins that listen to a specific warning or class to be notified. For
example, someone might register a listener for E1 and another for E111
if E111 is triggered by the code, both listeners should be notified.
If E112 is returned, then only E1 (and any other listeners) would be
notified.

To implement this goal, we needed an object to store listeners in that would
allow for efficient look up - a Trie (or Prefix Tree). Given that none of the
existing packages on PyPI allowed for storing data on each node of the trie,
it was left up to write our own as Trie. On
top of that we layer our Notifier class.

Now when Flake8 receives an error or warning, we can easily call the
notify() method and let plugins act on
that knowledge.

Default Plugins

Finally, Flake8 has always provided its own plugin shim for Pyflakes. As
part of that we carry our own shim in-tree and now store that in
flake8.plugins.pyflakes.

Flake8 also registers plugins for pep8. Each check in pep8 requires
different parameters and it cannot easily be shimmed together like Pyflakes
was. As such, plugins have a concept of a “group”. If you look at our
setup.py you will see that we register pep8 checks roughly like so:

pep8.<check-name> = pep8:<check-name>

We do this to identify that <check-name>> is part of a group. This also
enables us to special-case how we handle reporting those checks. Instead of
reporting each check in the --version output, we report pep8 and check
pep8 the module for a __version__ attribute. We only report it once
to avoid confusing users.

API Documentation

	
class flake8.plugins.manager.PluginManager(namespace, verify_requirements=False)

	Find and manage plugins consistently.

	
__init__(namespace, verify_requirements=False)

	Initialize the manager.

	Parameters:	
	namespace (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Namespace of the plugins to manage, e.g., ‘flake8.extension’.

	verify_requirements (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Whether or not to make setuptools verify that the requirements for
the plugin are satisfied.

	
map(func, *args, **kwargs)

	Call func with the plugin and *args and **kwargs after.

This yields the return value from func for each plugin.

	Parameters:	
	func (collections.Callable) – Function to call with each plugin. Signature should at least be:

def myfunc(plugin):
 pass

Any extra positional or keyword arguments specified with map will
be passed along to this function after the plugin. The plugin
passed is a Plugin.

	args – Positional arguments to pass to func after each plugin.

	kwargs – Keyword arguments to pass to func after each plugin.

	
versions()

	Generate the versions of plugins.

	Returns:	Tuples of the plugin_name and version

	Return type:	tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]

	
class flake8.plugins.manager.Plugin(name, entry_point)

	Wrap an EntryPoint from setuptools and other logic.

	
__init__(name, entry_point)

	“Initialize our Plugin.

	Parameters:	
	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name of the entry-point as it was registered with setuptools.

	entry_point (setuptools.EntryPoint) – EntryPoint returned by setuptools.

	
disable(optmanager)

	Add the plugin name to the default ignore list.

	
enable(optmanager)

	Remove plugin name from the default ignore list.

	
execute(*args, **kwargs)

	Call the plugin with *args and **kwargs.

	
group()

	Find and parse the group the plugin is in.

	
is_in_a_group()

	Determine if this plugin is in a group.

	Returns:	True if the plugin is in a group, otherwise False.

	Return type:	bool [https://docs.python.org/3.4/library/functions.html#bool]

	
load_plugin(verify_requirements=False)

	Retrieve the plugin for this entry-point.

This loads the plugin, stores it on the instance and then returns it.
It does not reload it after the first time, it merely returns the
cached plugin.

	Parameters:	verify_requirements (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Whether or not to make setuptools verify that the requirements for
the plugin are satisfied.

	Returns:	Nothing

	
off_by_default

	Return whether the plugin is ignored by default.

	
parameters

	List of arguments that need to be passed to the plugin.

	
plugin

	The loaded (and cached) plugin associated with the entry-point.

This property implicitly loads the plugin and then caches it.

	
plugin_name

	Return the name of the plugin.

	
provide_options(optmanager, options, extra_args)

	Pass the parsed options and extra arguments to the plugin.

	
register_options(optmanager)

	Register the plugin’s command-line options on the OptionManager.

	Parameters:	optmanager (flake8.options.manager.OptionManager) – Instantiated OptionManager to register options on.

	Returns:	Nothing

	
version

	Return the version of the plugin.

	
class flake8.plugins.manager.PluginTypeManager

	Parent class for most of the specific plugin types.

	
get(name, default=None)

	Retrieve the plugin referred to by name or return the default.

	Parameters:	
	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name of the plugin to retrieve.

	default – Default value to return.

	Returns:	Plugin object referred to by name, if it exists.

	Return type:	Plugin

	
load_plugins()

	Load all plugins of this type that are managed by this manager.

	
names

	Proxy attribute to underlying manager.

	
plugins

	Proxy attribute to underlying manager.

	
provide_options(optmanager, options, extra_args)

	Provide parsed options and extra arguments to the plugins.

	
register_options(optmanager)

	Register all of the checkers’ options to the OptionManager.

	
register_plugin_versions(optmanager)

	Register the plugins and their versions with the OptionManager.

	
class flake8.plugins.manager.Checkers

	All of the checkers registered through entry-ponits.

	
ast_plugins

	List of plugins that expect the AST tree.

	
checks_expecting(argument_name)

	Retrieve checks that expect an argument with the specified name.

Find all checker plugins that are expecting a specific argument.

	
logical_line_plugins

	List of plugins that expect the logical lines.

	
physical_line_plugins

	List of plugins that expect the physical lines.

	
class flake8.plugins.manager.Listeners

	All of the listeners registered through entry-points.

	
build_notifier()

	Build a Notifier for our Listeners.

	Returns:	Object to notify our listeners of certain error codes and
warnings.

	Return type:	Notifier

	
class flake8.plugins.manager.ReportFormatters

	All of the report formatters registered through entry-points.

	
class flake8.plugins.notifier.Notifier

	Object that tracks and notifies listener objects.

	
class flake8.plugins._trie.Trie

	The object that manages the trie nodes.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Exploring Flake8’s Internals

Utility Functions

Flake8 has a few utility functions that it uses internally.

Warning

As should be implied by where these are documented, these are all
internal utility functions. Their signatures and return types
may change between releases without notice.

Bugs reported about these internal functions will be closed
immediately.

If functions are needed by plugin developers, they may be requested
in the bug tracker and after careful consideration they may be added
to the documented stable API.

	
flake8.utils.parse_comma_separated_list(value)

	Parse a comma-separated list.

	Parameters:	value – String or list of strings to be parsed and normalized.

	Returns:	List of values with whitespace stripped.

	Return type:	list [https://docs.python.org/3.4/library/stdtypes.html#list]

parse_comma_separated_list() takes either a string like

"E121,W123,F904"
"E121,\nW123,\nF804"
"E121,\n\tW123,\n\tF804"

Or it will take a list of strings (potentially with whitespace) such as

[" E121\n", "\t\nW123 ", "\n\tF904\n "]

And converts it to a list that looks as follows

["E121", "W123", "F904"]

This function helps normalize any kind of comma-separated input you or Flake8
might receive. This is most helpful when taking advantage of Flake8‘s
additional parameters to Option.

	
flake8.utils.normalize_path(path, parent='.')

	Normalize a single-path.

	Returns:	The normalized path.

	Return type:	str [https://docs.python.org/3.4/library/stdtypes.html#str]

This utility takes a string that represents a path and returns the absolute
path if the string has a / in it. It also removes trailing /s.

	
flake8.utils.normalize_paths(paths, parent='.')

	Parse a comma-separated list of paths.

	Returns:	The normalized paths.

	Return type:	[str]

This function utilizes parse_comma_separated_list() and
normalize_path() to normalize it’s input to a list of
strings that should be paths.

	
flake8.utils.stdin_get_value()

	Get and cache it so plugins can use it.

This function retrieves and caches the value provided on sys.stdin. This
allows plugins to use this to retrieve stdin if necessary.

	
flake8.utils.is_windows()

	Determine if we’re running on Windows.

	Returns:	True if running on Windows, otherwise False

	Return type:	bool [https://docs.python.org/3.4/library/functions.html#bool]

This provides a convenient and explicitly named function that checks if we are
currently running on a Windows (or nt) operating system.

	
flake8.utils.can_run_multiprocessing_on_windows()

	Determine if we can use multiprocessing on Windows.

	Returns:	True if the version of Python is modern enough, otherwise False

	Return type:	bool [https://docs.python.org/3.4/library/functions.html#bool]

This provides a separate and distinct check from
is_windows() that allows us to check if the version of
Python we’re using can actually use multiprocessing on Windows.

	
flake8.utils.is_using_stdin(paths)

	Determine if we’re going to read from stdin.

	Parameters:	paths (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – The paths that we’re going to check.

	Returns:	True if stdin (-) is in the path, otherwise False

	Return type:	bool [https://docs.python.org/3.4/library/functions.html#bool]

Another helpful function that is named only to be explicit given it is a very
trivial check, this checks if the user specified - in their arguments to
Flake8 to indicate we should read from stdin.

	
flake8.utils.filenames_from(arg, predicate=None)

	Generate filenames from an argument.

	Parameters:	
	arg (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Parameter from the command-line.

	predicate (callable [https://docs.python.org/3.4/library/functions.html#callable]) – Predicate to use to filter out filenames. If the predicate
returns True we will exclude the filename, otherwise we
will yield it. By default, we include every filename
generated.

	Returns:	Generator of paths

When provided an argument to Flake8, we need to be able to traverse
directories in a convenient manner. For example, if someone runs

$ flake8 flake8/

Then they want us to check all of the files in the directory flake8/. This
function will handle that while also handling the case where they specify a
file like:

$ flake8 flake8/__init__.py

	
flake8.utils.fnmatch(filename, patterns, default=True)

	Wrap fnmatch.fnmatch() [https://docs.python.org/3.4/library/fnmatch.html#fnmatch.fnmatch] to add some functionality.

	Parameters:	
	filename (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name of the file we’re trying to match.

	patterns (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – Patterns we’re using to try to match the filename.

	default (bool [https://docs.python.org/3.4/library/functions.html#bool]) – The default value if patterns is empty

	Returns:	True if a pattern matches the filename, False if it doesn’t.
default if patterns is empty.

The standard library’s fnmatch.fnmatch() [https://docs.python.org/3.4/library/fnmatch.html#fnmatch.fnmatch] is excellent at deciding if a
filename matches a single pattern. In our use case, however, we typically have
a list of patterns and want to know if the filename matches any of them. This
function abstracts that logic away with a little extra logic.

	
flake8.utils.parameters_for(plugin)

	Return the parameters for the plugin.

This will inspect the plugin and return either the function parameters
if the plugin is a function or the parameters for __init__ after
self if the plugin is a class.

	Parameters:	plugin (flake8.plugins.manager.Plugin) – The internal plugin object.

	Returns:	Parameters to the plugin.

	Return type:	list(str)

Flake8 analyzes the parameters to plugins to determine what input they are
expecting. Plugins may expect one of the following:

	physical_line to receive the line as it appears in the file

	logical_line to receive the logical line (not as it appears in the file)

	tree to receive the abstract syntax tree (AST) for the file

We also analyze the rest of the parameters to provide more detail to the
plugin. This function will return the parameters in a consistent way across
versions of Python and will handle both classes and functions that are used as
plugins. Further, if the plugin is a class, it will strip the self
argument so we can check the parameters of the plugin consistently.

	
flake8.utils.parse_unified_diff(diff=None)

	Parse the unified diff passed on stdin.

	Returns:	dictionary mapping file names to sets of line numbers

	Return type:	dict [https://docs.python.org/3.4/library/stdtypes.html#dict]

To handle usage of flake8 --diff, Flake8 needs to be able
to parse the name of the files in the diff as well as the ranges indicated the
sections that have been changed. This function either accepts the diff as an
argument or reads the diff from standard-in. It then returns a dictionary with
filenames as the keys and sets of line numbers as the value.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

Release Notes and History

All of the release notes that have been recorded for Flake8 are organized here
with the newest releases first.

	3.0.0b1 – 2016-06-25

	2.5.5 - 2016-06-14

	2.5.4 - 2016-02-11

	2.5.3 - 2016-02-11

	2.5.2 - 2016-01-30

	2.5.1 - 2015-12-08

	2.5.0 - 2015-10-26

	2.4.1 - 2015-05-18

	2.4.0 - 2015-03-07

	2.3.0 - 2015-01-04

	2.2.5 - 2014-10-19

	2.2.4 - 2014-10-09

	2.2.3 - 2014-08-25

	2.2.2 - 2014-07-04

	2.2.1 - 2014-06-30

	2.2.0 - 2014-06-22

	2.1.0 - 2013-10-26

	2.0.0 - 2013-02-23

	1.7.0 - 2012-12-21

	1.6.2 - 2012-11-25

	1.6.1 - 2012-11-24

	1.6 - 2012-11-16

	1.5 - 2012-10-13

	1.4 - 2012-07-12

	1.3.1 - 2012-05-19

	1.3 - 2012-03-12

	1.2 - 2012-02-12

	1.1 - 2012-02-14

	1.0 - 2011-11-29

	0.9 - 2011-11-09

	0.8 - 2011-02-27

	0.7 - 2010-02-18

	0.6 - 2010-02-15

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

3.0.0b1 – 2016-06-25

	Rewrite our documentation from scratch! (http://flake8.pycqa.org)

	Drop explicit support for Pythons 2.6, 3.2, and 3.3.

	Remove dependence on pep8/pycodestyle for file processing, plugin
dispatching, and more. We now control all of this while keeping backwards
compatibility.

	--select and --ignore can now both be specified and try to find the
most specific rule from each. For example, if you do --select E --ignore
E123 then we will report everything that starts with E except for
E123. Previously, you would have had to do --ignore E123,F,W which
will also still work, but the former should be far more intuitive.

	Add support for in-line # noqa comments to specify only the error
codes to be ignored, e.g., # noqa: E123,W503

	Add entry-point for formatters as well as a base class that new formatters
can inherit from. See the documentation for more details.

	Add detailed verbose output using the standard library logging module.

	Enhance our usage of optparse for plugin developers by adding new parameters
to the add_option that plugins use to register new options.

	Update --install-hook to require the name of version control system hook
you wish to install a Flake8.

	Stop checking sub-directories more than once via the setuptools command

	When passing a file on standard-in, allow the caller to specify
--stdin-display-name so the output is properly formatted

	The Git hook now uses sys.executable to format the shebang line.
This allows Flake8 to install a hook script from a virtualenv that points to
that virtualenv’s Flake8 as opposed to a global one (without the virtualenv
being sourced).

	When using --count, the output is no longer written to stderr.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.5.5 - 2016-06-14

	Bug Fix setuptools integration when parsing config files

	Bug Don’t pass the user’s config path as the config_file when creating a
StyleGuide

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.5.4 - 2016-02-11

	Bug Missed an attribute rename during the v2.5.3 release.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.5.3 - 2016-02-11

	Bug Actually parse output_file and enable_extensions from config
files

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.5.2 - 2016-01-30

	Bug Parse output_file and enable_extensions from config files

	Improvement Raise upper bound on mccabe plugin to allow for version
0.4.0

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.5.1 - 2015-12-08

	Bug Properly look for .flake8 in current working directory
(GitLab#103 [https://gitlab.com/pycqa/flake8/issues/103])

	Bug Monkey-patch pep8.stdin_get_value to cache the actual value in
stdin. This helps plugins relying on the function when run with
multiprocessing. (GitLab#105 [https://gitlab.com/pycqa/flake8/issues/105], GitLab#107 [https://gitlab.com/pycqa/flake8/issues/107])

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.5.0 - 2015-10-26

	Improvement Raise cap on PyFlakes for Python 3.5 support

	Improvement Avoid deprecation warnings when loading extensions
(GitLab#59 [https://gitlab.com/pycqa/flake8/issues/59], GitLab#90 [https://gitlab.com/pycqa/flake8/issues/90])

	Improvement Separate logic to enable “off-by-default” extensions
(GitLab#67 [https://gitlab.com/pycqa/flake8/issues/67])

	Bug Properly parse options to setuptools Flake8 command (GitLab!41 [https://gitlab.com/pycqa/flake8/merge_requests/41])

	Bug Fix exceptions when output on stdout is truncated before Flake8
finishes writing the output (GitLab#69 [https://gitlab.com/pycqa/flake8/issues/69])

	Bug Fix error on OS X where Flake8 can no longer acquire or create new
semaphores (GitLab#74 [https://gitlab.com/pycqa/flake8/issues/74])

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.4.1 - 2015-05-18

	Bug Do not raise a SystemError unless there were errors in the
setuptools command. (GitLab#39 [https://gitlab.com/pycqa/flake8/issues/39], GitLab!23 [https://gitlab.com/pycqa/flake8/merge_requests/23])

	Bug Do not verify dependencies of extensions loaded via entry-points.

	Improvement Blacklist versions of pep8 we know are broken

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.4.0 - 2015-03-07

	Bug Print filenames when using multiprocessing and -q option.
(GitLab#31 [https://gitlab.com/pycqa/flake8/issues/31])

	Bug Put upper cap on dependencies. The caps for 2.4.0 are:

	pep8 < 1.6 (Related to GitLab#35 [https://gitlab.com/pycqa/flake8/issues/35])

	mccabe < 0.4

	pyflakes < 0.9

See also GitLab#32 [https://gitlab.com/pycqa/flake8/issues/32]

	Bug Files excluded in a config file were not being excluded when flake8
was run from a git hook. (GitHub#2 [https://github.com/pycqa/flake8/pull/2])

	Improvement Print warnings for users who are providing mutually
exclusive options to flake8. (GitLab#8 [https://gitlab.com/pycqa/flake8/issues/8], GitLab!18 [https://gitlab.com/pycqa/flake8/merge_requests/18])

	Feature Allow git hook configuration to live in .git/config.
See the updated VCS hooks docs [https://flake8.readthedocs.org/en/latest/vcs.html] for more details. (GitLab!20 [https://gitlab.com/pycqa/flake8/merge_requests/20])

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.3.0 - 2015-01-04

	Feature: Add --output-file option to specify a file to write to
instead of stdout.

	Bug Fix interleaving of output while using multiprocessing
(GitLab#17 [https://gitlab.com/pycqa/flake8/issues/17])

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.2.5 - 2014-10-19

	Flush standard out when using multiprocessing

	Make the check for “# flake8: noqa” more strict

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.2.4 - 2014-10-09

	Fix bugs triggered by turning multiprocessing on by default (again)

Multiprocessing is forcibly disabled in the following cases:

	Passing something in via stdin

	Analyzing a diff

	Using windows

	Fix –install-hook when there are no config files present for pep8 or
flake8.

	Fix how the setuptools command parses excludes in config files

	Fix how the git hook determines which files to analyze (Thanks Chris
Buccella!)

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.2.3 - 2014-08-25

	Actually turn multiprocessing on by default

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.2.2 - 2014-07-04

	Re-enable multiprocessing by default while fixing the issue Windows users
were seeing.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.2.1 - 2014-06-30

	Turn off multiple jobs by default. To enable automatic use of all CPUs, use
--jobs=auto. Fixes #155 and #154.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.2.0 - 2014-06-22

	New option doctests to run Pyflakes checks on doctests too

	New option jobs to launch multiple jobs in parallel

	Turn on using multiple jobs by default using the CPU count

	Add support for python -m flake8 on Python 2.7 and Python 3

	Fix Git and Mercurial hooks: issues #88, #133, #148 and #149

	Fix crashes with Python 3.4 by upgrading dependencies

	Fix traceback when running tests with Python 2.6

	Fix the setuptools command python setup.py flake8 to read
the project configuration

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.1.0 - 2013-10-26

	Add FLAKE8_LAZY and FLAKE8_IGNORE environment variable support to git and
mercurial hooks

	Force git and mercurial hooks to repsect configuration in setup.cfg

	Only check staged files if that is specified

	Fix hook file permissions

	Fix the git hook on python 3

	Ignore non-python files when running the git hook

	Ignore .tox directories by default

	Flake8 now reports the column number for PyFlakes messages

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

2.0.0 - 2013-02-23

	Pyflakes errors are prefixed by an F instead of an E

	McCabe complexity warnings are prefixed by a C instead of a W

	Flake8 supports extensions through entry points

	Due to the above support, we require setuptools

	We publish the documentation [https://flake8.readthedocs.org/]

	Fixes #13: pep8, pyflakes and mccabe become external dependencies

	Split run.py into main.py, engine.py and hooks.py for better logic

	Expose our parser for our users

	New feature: Install git and hg hooks automagically

	By relying on pyflakes (0.6.1), we also fixed #45 and #35

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

1.7.0 - 2012-12-21

	Fixes part of #35: Exception for no WITHITEM being an attribute of Checker
for Python 3.3

	Support stdin

	Incorporate @phd’s builtins pull request

	Fix the git hook

	Update pep8.py to the latest version

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

1.6.2 - 2012-11-25

	fixed the NameError: global name ‘message’ is not defined (#46)

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

1.6.1 - 2012-11-24

	fixed the mercurial hook, a change from a previous patch was not properly
applied

	fixed an assumption about warnings/error messages that caused an exception
to be thrown when McCabe is used

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

1.6 - 2012-11-16

	changed the signatures of the check_file function in flake8/run.py,
skip_warning in flake8/util.py and the check, checkPath
functions in flake8/pyflakes.py.

	fix --exclude and --ignore command flags (#14, #19)

	fix the git hook that wasn’t catching files not already added to the index
(#29)

	pre-emptively includes the addition to pep8 to ignore certain lines.
Add # nopep8 to the end of a line to ignore it. (#37)

	check_file can now be used without any special prior setup (#21)

	unpacking exceptions will no longer cause an exception (#20)

	fixed crash on non-existent file (#38)

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

1.5 - 2012-10-13

	fixed the stdin

	make sure mccabe catches the syntax errors as warnings

	pep8 upgrade

	added max_line_length default value

	added Flake8Command and entry points if setuptools is around

	using the setuptools console wrapper when available

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

1.4 - 2012-07-12

	git_hook: Only check staged changes for compliance

	use pep8 1.2

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

1.3.1 - 2012-05-19

	fixed support for Python 2.5

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

1.3 - 2012-03-12

	fixed false W402 warning on exception blocks.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

1.2 - 2012-02-12

	added a git hook

	now Python 3 compatible

	mccabe and pyflakes have warning codes like pep8 now

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

1.1 - 2012-02-14

	fixed the value returned by –version

	allow the flake8: header to be more generic

	fixed the “hg hook raises ‘physical lines’” bug

	allow three argument form of raise

	now uses setuptools if available, for ‘develop’ command

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

1.0 - 2011-11-29

	Deactivates by default the complexity checker

	Introduces the complexity option in the HG hook and the command line.

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

0.9 - 2011-11-09

	update pep8 version to 0.6.1

	mccabe check: gracefully handle compile failure

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

0.8 - 2011-02-27

	fixed hg hook

	discard unexisting files on hook check

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

0.7 - 2010-02-18

	Fix pep8 initialization when run through Hg

	Make pep8 short options work when run through the command line

	Skip duplicates when controlling files via Hg

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	flake8 3.0.0b1 documentation

 	Release Notes and History

0.6 - 2010-02-15

	Fix the McCabe metric on some loops

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	flake8 3.0.0b1 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 flake8	

 	
 	
 flake8.api	

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	flake8 3.0.0b1 documentation

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	

 	
 --append-config=<config>

 	

 	flake8 command line option

 	
 --benchmark

 	

 	flake8 command line option

 	
 --builtins=<builtins>

 	

 	flake8 command line option

 	
 --config=<config>

 	

 	flake8 command line option

 	
 --count

 	

 	flake8 command line option

 	
 --diff

 	

 	flake8 command line option

 	
 --disable-noqa

 	

 	flake8 command line option

 	
 --doctests

 	

 	flake8 command line option

 	
 --enable-extensions=<errors>

 	

 	flake8 command line option

 	
 --exclude-from-doctest=<paths>

 	

 	flake8 command line option

 	
 --exclude=<patterns>

 	

 	flake8 command line option

 	
 --exit-zero

 	

 	flake8 command line option

 	
 --filename=<patterns>

 	

 	flake8 command line option

 	
 --format=<format>

 	

 	flake8 command line option

 	
 --hang-closing

 	

 	flake8 command line option

 	

 	
 --ignore=<errors>

 	

 	flake8 command line option

 	
 --include-in-doctest=<paths>

 	

 	flake8 command line option

 	
 --install-hook=VERSION_CONTROL_SYSTEM

 	

 	flake8 command line option

 	
 --isolated

 	

 	flake8 command line option

 	
 --jobs=<n>

 	

 	flake8 command line option

 	
 --max-line-length=<n>

 	

 	flake8 command line option

 	
 --output-file=<path>

 	

 	flake8 command line option

 	
 --select=<errors>

 	

 	flake8 command line option

 	
 --show-source

 	

 	flake8 command line option

 	
 --statistics

 	

 	flake8 command line option

 	
 --stdin-display-name=<display_name>

 	

 	flake8 command line option

 	
 --version

 	

 	flake8 command line option

 	
 -h, --help

 	

 	flake8 command line option

 	
 -q, --quiet

 	

 	flake8 command line option

 	
 -v, --verbose

 	

 	flake8 command line option

_

 	

 	__init__() (flake8.options.config.ConfigFileFinder method)

 	

 	(flake8.options.config.MergedConfigParser method)

 	(flake8.options.manager.Option method)

 	(flake8.options.manager.OptionManager method)

 	(flake8.plugins.manager.Plugin method)

 	(flake8.plugins.manager.PluginManager method)

 	

 	__weakref__ (flake8.options.config.ConfigFileFinder attribute)

 	

 	(flake8.options.config.MergedConfigParser attribute)

 	(flake8.options.manager.OptionManager attribute)

A

 	

 	add_option() (flake8.options.manager.OptionManager method)

 	after_init() (flake8.formatting.base.BaseFormatter method)

 	

 	(flake8.formatting.default.Default method)

 	aggregate_options() (in module flake8.options.aggregator)

 	

 	Application (class in flake8.main.application)

 	ast_plugins (flake8.plugins.manager.Checkers attribute)

B

 	

 	BaseFormatter (class in flake8.formatting.base)

 	build_ast() (flake8.processor.FileProcessor method)

 	build_logical_line() (flake8.processor.FileProcessor method)

 	

 	build_logical_line_tokens() (flake8.processor.FileProcessor method)

 	build_notifier() (flake8.plugins.manager.Listeners method)

C

 	

 	can_run_multiprocessing_on_windows() (in module flake8.utils)

 	check

 	check_physical_eol() (flake8.checker.FileChecker method)

 	check_physical_error() (flake8.processor.FileProcessor method)

 	Checkers (class in flake8.plugins.manager)

 	

 	checks_expecting() (flake8.plugins.manager.Checkers method)

 	class

 	cli_config() (flake8.options.config.ConfigFileFinder method)

 	ConfigFileFinder (class in flake8.options.config)

 	count_parentheses() (in module flake8.processor)

D

 	

 	Default (class in flake8.formatting.default)

 	delete_first_token() (flake8.processor.FileProcessor method)

 	

 	disable() (flake8.plugins.manager.Plugin method)

E

 	

 	enable() (flake8.plugins.manager.Plugin method)

 	error

 	error class

 	error code

 	

 	execute() (flake8.plugins.manager.Plugin method)

 	exit() (flake8.main.application.Application method)

 	expand_indent() (in module flake8.processor)

 	extend_default_ignore() (flake8.options.manager.OptionManager method)

F

 	

 	FileChecker (class in flake8.checker)

 	filename (BaseFormatter attribute)

 	filenames_from() (in module flake8.utils)

 	FileProcessor (class in flake8.processor)

 	find_plugins() (flake8.main.application.Application method)

 	
 flake8 command line option

 	

 	--append-config=<config>

 	--benchmark

 	--builtins=<builtins>

 	--config=<config>

 	--count

 	--diff

 	--disable-noqa

 	--doctests

 	--enable-extensions=<errors>

 	--exclude-from-doctest=<paths>

 	--exclude=<patterns>

 	--exit-zero

 	--filename=<patterns>

 	--format=<format>

 	--hang-closing

 	--ignore=<errors>

 	--include-in-doctest=<paths>

 	--install-hook=VERSION_CONTROL_SYSTEM

 	--isolated

 	--jobs=<n>

 	--max-line-length=<n>

 	--output-file=<path>

 	--select=<errors>

 	--show-source

 	--statistics

 	--stdin-display-name=<display_name>

 	--version

 	-h, --help

 	-q, --quiet

 	-v, --verbose

 	

 	flake8.api (module)

 	fnmatch() (in module flake8.utils)

 	format() (flake8.formatting.base.BaseFormatter method)

 	format_plugin() (flake8.options.manager.OptionManager static method)

 	formatter

G

 	

 	generate_epilog() (flake8.options.manager.OptionManager method)

 	generate_possible_local_files() (flake8.options.config.ConfigFileFinder method)

 	generate_tokens() (flake8.processor.FileProcessor method)

 	generate_versions() (flake8.options.manager.OptionManager method)

 	

 	get() (flake8.plugins.manager.PluginTypeManager method)

 	get_style_guide() (in module flake8.api)

 	group() (flake8.plugins.manager.Plugin method)

H

 	

 	handle() (flake8.formatting.base.BaseFormatter method)

 	handle_comment() (flake8.checker.FileChecker method)

 	

 	handle_newline() (flake8.checker.FileChecker method)

I

 	

 	initialize() (flake8.main.application.Application method)

 	inside_multiline() (flake8.processor.FileProcessor method)

 	is_configured_by() (flake8.options.config.MergedConfigParser method)

 	is_eol_token() (in module flake8.processor)

 	is_in_a_group() (flake8.plugins.manager.Plugin method)

 	

 	is_multiline_string() (in module flake8.processor)

 	is_path_excluded() (flake8.checker.Manager method)

 	is_using_stdin() (in module flake8.utils)

 	is_windows() (in module flake8.utils)

K

 	

 	keyword_arguments_for() (flake8.processor.FileProcessor method)

L

 	

 	line_for() (flake8.processor.FileProcessor method)

 	Listeners (class in flake8.plugins.manager)

 	load_plugin() (flake8.plugins.manager.Plugin method)

 	load_plugins() (flake8.plugins.manager.PluginTypeManager method)

 	

 	local_config_files() (flake8.options.config.ConfigFileFinder method)

 	local_configs() (flake8.options.config.ConfigFileFinder method)

 	log_token() (in module flake8.processor)

 	logical_line_plugins (flake8.plugins.manager.Checkers attribute)

M

 	

 	main() (in module flake8.main.cli)

 	make_checkers() (flake8.checker.Manager method)

 	make_file_checker_manager() (flake8.main.application.Application method)

 	make_formatter() (flake8.main.application.Application method)

 	make_guide() (flake8.main.application.Application method)

 	make_notifier() (flake8.main.application.Application method)

 	

 	Manager (class in flake8.checker)

 	map() (flake8.plugins.manager.PluginManager method)

 	mccabe

 	merge_user_and_local_config() (flake8.options.config.MergedConfigParser method)

 	MergedConfigParser (class in flake8.options.config)

 	mutate_string() (in module flake8.processor)

N

 	

 	names (flake8.plugins.manager.PluginTypeManager attribute)

 	newline (BaseFormatter attribute)

 	next_line() (flake8.processor.FileProcessor method)

 	next_logical_line() (flake8.processor.FileProcessor method)

 	

 	normalize() (flake8.options.manager.Option method)

 	normalize_path() (in module flake8.utils)

 	normalize_paths() (in module flake8.utils)

 	Notifier (class in flake8.plugins.notifier)

O

 	

 	off_by_default (flake8.plugins.manager.Plugin attribute)

 	Option (class in flake8.options.manager)

 	OptionManager (class in flake8.options.manager)

 	

 	options (BaseFormatter attribute)

 	output_fd (BaseFormatter attribute)

P

 	

 	parameters (flake8.plugins.manager.Plugin attribute)

 	parameters_for() (in module flake8.utils)

 	parse() (flake8.options.config.MergedConfigParser method)

 	parse_args() (flake8.options.manager.OptionManager method)

 	parse_cli_config() (flake8.options.config.MergedConfigParser method)

 	parse_comma_separated_list() (in module flake8.utils)

 	parse_configuration_and_cli() (flake8.main.application.Application method)

 	parse_local_config() (flake8.options.config.MergedConfigParser method)

 	parse_unified_diff() (in module flake8.utils)

 	parse_user_config() (flake8.options.config.MergedConfigParser method)

 	physical_line_plugins (flake8.plugins.manager.Checkers attribute)

 	plugin

 	

 	Plugin (class in flake8.plugins.manager)

 	plugin (flake8.plugins.manager.Plugin attribute)

 	plugin_name (flake8.plugins.manager.Plugin attribute)

 	PluginManager (class in flake8.plugins.manager)

 	plugins (flake8.plugins.manager.PluginTypeManager attribute)

 	PluginTypeManager (class in flake8.plugins.manager)

 	process_tokens() (flake8.checker.FileChecker method)

 	provide_options() (flake8.plugins.manager.Plugin method)

 	

 	(flake8.plugins.manager.PluginTypeManager method)

 	pycodestyle

 	pyflakes

 	Pylint (class in flake8.formatting.default)

 	
 Python Enhancement Proposals

 	

 	PEP 257

 	PEP 8

R

 	

 	read_lines() (flake8.processor.FileProcessor method)

 	read_lines_from_filename() (flake8.processor.FileProcessor method)

 	read_lines_from_stdin() (flake8.processor.FileProcessor method)

 	register_default_options() (in module flake8.main.options)

 	register_options() (flake8.plugins.manager.Plugin method)

 	

 	(flake8.plugins.manager.PluginTypeManager method)

 	register_plugin() (flake8.options.manager.OptionManager method)

 	register_plugin_options() (flake8.main.application.Application method)

 	register_plugin_versions() (flake8.plugins.manager.PluginTypeManager method)

 	remove_from_default_ignore() (flake8.options.manager.OptionManager method)

 	report() (flake8.checker.FileChecker method)

 	

 	(flake8.checker.Manager method)

 	report_benchmarks() (flake8.main.application.Application method)

 	

 	report_errors() (flake8.main.application.Application method)

 	ReportFormatters (class in flake8.plugins.manager)

 	reset_blank_before() (flake8.processor.FileProcessor method)

 	run() (flake8.checker.Manager method)

 	

 	(flake8.main.application.Application method)

 	run_ast_checks() (flake8.checker.FileChecker method)

 	run_check() (flake8.checker.FileChecker method)

 	run_checks() (flake8.checker.FileChecker method)

 	

 	(flake8.main.application.Application method)

 	run_logical_checks() (flake8.checker.FileChecker method)

 	run_parallel() (flake8.checker.Manager method)

 	run_physical_checks() (flake8.checker.FileChecker method)

 	run_serial() (flake8.checker.Manager method)

S

 	

 	should_ignore_file() (flake8.processor.FileProcessor method)

 	show_benchmarks() (flake8.formatting.base.BaseFormatter method)

 	show_source() (flake8.formatting.base.BaseFormatter method)

 	split_line() (flake8.processor.FileProcessor method)

 	

 	start() (flake8.checker.Manager method)

 	

 	(flake8.formatting.base.BaseFormatter method)

 	stdin_get_value() (in module flake8.utils)

 	stop() (flake8.checker.Manager method)

 	

 	(flake8.formatting.base.BaseFormatter method)

 	strip_utf_bom() (flake8.processor.FileProcessor method)

T

 	

 	to_optparse() (flake8.options.manager.Option method)

 	token_is_comment() (in module flake8.processor)

 	

 	token_is_newline() (in module flake8.processor)

 	Trie (class in flake8.plugins._trie)

U

 	

 	update_checker_state_for() (flake8.processor.FileProcessor method)

 	update_state() (flake8.processor.FileProcessor method)

 	update_version_string() (flake8.options.manager.OptionManager method)

 	

 	user_config() (flake8.options.config.ConfigFileFinder method)

 	user_config_file() (flake8.options.config.ConfigFileFinder method)

V

 	

 	version (flake8.plugins.manager.Plugin attribute)

 	versions() (flake8.plugins.manager.PluginManager method)

 	

 	visited_new_blank_line() (flake8.processor.FileProcessor method)

W

 	

 	warning

 	

 	write() (flake8.formatting.base.BaseFormatter method)

 Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

 _static/comment.png

_static/comment-bright.png

_static/up-pressed.png

release-notes/2.6.1.html

 Navigation

 		
 index

 		
 modules |

 		flake8 3.0.0b1 documentation »

2.6.1 - 2016-06-25

		Bug Update the config files to search for to include setup.cfg and
tox.ini. This was broken in 2.5.5 when we stopped passing
config_file to our Style Guide

 © Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		flake8 3.0.0b1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		flake8 3.0.0b1 documentation »

 All modules for which code is available

		flake8.api

		flake8.checker

		flake8.formatting.base

		flake8.formatting.default

		flake8.main.application

		flake8.main.cli

		flake8.main.options

		flake8.options.aggregator

		flake8.options.config

		flake8.options.manager

		flake8.plugins._trie

		flake8.plugins.manager

		flake8.plugins.notifier

		flake8.processor

		flake8.utils

 © Copyright 2016, Ian Cordasco.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

