

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	flake8 2.5.5 documentation

Flake8

Flake8 is a wrapper around these tools:

	PyFlakes

	pep8

	Ned Batchelder’s McCabe script

Flake8 runs all the tools by launching the single flake8 script.
It displays the warnings in a per-file, merged output.

It also adds a few features:

	files that contain this line are skipped:

flake8: noqa

	lines that contain a # noqa comment at the end will not issue warnings.

	a Git and a Mercurial hook.

	a McCabe complexity checker.

	extendable through flake8.extension entry points.

QuickStart

pip install flake8

To run flake8 just invoke it against any directory or Python module:

$ flake8 coolproject
coolproject/mod.py:97:1: F401 'shutil' imported but unused
coolproject/mod.py:625:17: E225 missing whitespace around operato
coolproject/mod.py:729:1: F811 redefinition of function 'readlines' from line 723
coolproject/mod.py:1028:1: F841 local variable 'errors' is assigned to but never used

The outputs of PyFlakes and pep8 (and the optional plugins) are merged
and returned.

flake8 offers an extra option: –max-complexity, which will emit a warning if
the McCabe complexity of a function is higher than the value. By default it’s
deactivated:

$ flake8 --max-complexity 12 coolproject
coolproject/mod.py:97:1: F401 'shutil' imported but unused
coolproject/mod.py:625:17: E225 missing whitespace around operator
coolproject/mod.py:729:1: F811 redefinition of unused 'readlines' from line 723
coolproject/mod.py:939:1: C901 'Checker.check_all' is too complex (12)
coolproject/mod.py:1028:1: F841 local variable 'errors' is assigned to but never used
coolproject/mod.py:1204:1: C901 'selftest' is too complex (14)

This feature is quite useful to detect over-complex code. According to McCabe,
anything that goes beyond 10 is too complex.
See https://en.wikipedia.org/wiki/Cyclomatic_complexity.

Frequently Asked Questions

Why does flake8 pin the version of pep8?

Version 1.6 of pep8 doesn’t work properly with flake8. Until pep8 releases a
version that works, flake8 pins the version of pep8 so that flake8 will work as
a whole.

Is flake8 broken?

Flake8 combines two other projects that are significant on their own: pep8 and
PyFlakes. If flake8 is doing something you don’t like, it is quite likely that
the problem lies in one of those other projects. You can run them separately
to see if they are the cause of your difficulties. We greatly appreciate your
efforts to diagnose the source of the problem before reporting bugs against
flake8.

Questions or Feedback

If you have questions you’d like to ask the developers, or feedback you’d like
to provide, feel free to use the mailing list: code-quality@python.org We
would love to hear from you. Additionally, if you have a feature you’d like to
suggest, the mailing list would be the best place for it.

Links

	flake8 documentation [http://flake8.readthedocs.org/en/latest/]

	pep8 documentation [http://pep8.readthedocs.org/en/latest/]

Documentation

	Configuration
	User (Global)

	Per-Project

	Default

	Settings

	Warning / Error codes

	VCS Hooks

	Buildout integration

	Setuptools integration

	Flake8 API
	flake8.engine

	flake8.hooks

	flake8.main

	flake8.util

	Writing an Extension for Flake8
	A real example: McCabe

	Existing Extensions

	Changes
	2.5.5 - 2016-06-14

	2.5.4 - 2016-02-11

	2.5.3 - 2016-02-11

	2.5.2 - 2016-01-30

	2.5.1 - 2015-12-08

	2.5.0 - 2015-10-26

	2.4.1 - 2015-05-18

	2.4.0 - 2015-03-07

	2.3.0 - 2015-01-04

	2.2.5 - 2014-10-19

	2.2.4 - 2014-10-09

	2.2.3 - 2014-08-25

	2.2.2 - 2014-07-04

	2.2.1 - 2014-06-30

	2.2.0 - 2014-06-22

	2.1.0 - 2013-10-26

	2.0.0 - 2013-02-23

	1.7.0 - 2012-12-21

	1.6.2 - 2012-11-25

	1.6.1 - 2012-11-24

	1.6 - 2012-11-16

	1.5 - 2012-10-13

	1.4 - 2012-07-12

	1.3.1 - 2012-05-19

	1.3 - 2012-03-12

	1.2 - 2012-02-12

	1.1 - 2012-02-14

	1.0 - 2011-11-29

	0.9 - 2011-11-09

	0.8 - 2011-02-27

	0.7 - 2010-02-18

	0.6 - 2010-02-15

Original Projects

Flake8 is just a glue project, all the merits go to the creators of the original
projects:

	pep8: https://github.com/jcrocholl/pep8

	PyFlakes: https://launchpad.net/pyflakes

	McCabe: http://nedbatchelder.com/blog/200803/python_code_complexity_microtool.html

 Copyright 2012-2013 - Tarek Ziade, Ian Cordasco, Florent Xicluna.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 2.5.5 documentation

Configuration

Configuration settings are applied in three ways: user, project, and the
--config CLI argument. The user (global) configuration is read first. Next
the project configuration is loaded, and overrides any settings found in both
the user (global) and project configurations. Finally, if the --config
argument is used on the command line, the specified file is loaded and
overrides any settings that overlap with the user (global) and project
configurations.

User (Global)

The user settings are read from the ~/.config/flake8 file (or the
~/.flake8 file on Windows).
Example:

[flake8]
ignore = E226,E302,E41
max-line-length = 160
exclude = tests/*
max-complexity = 10

Per-Project

At the project level, the tox.ini, setup.cfg, .pep8 or .flake8
files are read if present. Only the first file is considered. If this file
does not have a [flake8] section, no project specific configuration is
loaded.

Default

If the ignore option is not in the configuration and not in the arguments,
only the error codes E123/E133, E226 and E241/E242 are ignored
(see the warning and error codes).

Settings

This is a (likely incomplete) list of settings that can be used in your config
file. In general, any settings that pep8 supports we also support and we add
the ability to set max-complexity as well.

	exclude: comma-separated filename and glob patterns
default: .svn,CVS,.bzr,.hg,.git,__pycache__

	filename: comma-separated filename and glob patterns
default: *.py

	select: select errors and warnings to enable which are off by default

	ignore: skip errors or warnings

	max-line-length: set maximum allowed line length
default: 79

	format: set the error format

	max-complexity: McCabe complexity threshold

 Copyright 2012-2013 - Tarek Ziade, Ian Cordasco, Florent Xicluna.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 2.5.5 documentation

Warning / Error codes

The convention of Flake8 is to assign a code to each error or warning, like
the pep8 tool. These codes are used to configure the list of errors
which are selected or ignored.

Each code consists of an upper case ASCII letter followed by three digits.
The recommendation is to use a different prefix for each plugin. A list of the
known prefixes is published below:

	E***/W***: pep8 errors and warnings [http://pep8.readthedocs.org/en/latest/intro.html#error-codes]

	F***: PyFlakes codes (see below)

	C9**: McCabe complexity plugin mccabe [https://github.com/flintwork/mccabe]

	N8**: Naming Conventions plugin pep8-naming [https://github.com/flintwork/pep8-naming]

The original PyFlakes does not provide error codes. Flake8 patches the
PyFlakes messages to add the following codes:

	code
	sample message

	F401
	module imported but unused

	F402
	import module from line N shadowed by loop variable

	F403
	‘from module import *’ used; unable to detect undefined names

	F404
	future import(s) name after other statements

	
	

	F811
	redefinition of unused name from line N

	F812
	list comprehension redefines name from line N

	F821
	undefined name name

	F822
	undefined name name in __all__

	F823
	local variable name ... referenced before assignment

	F831
	duplicate argument name in function definition

	F841
	local variable name is assigned to but never used

 Copyright 2012-2013 - Tarek Ziade, Ian Cordasco, Florent Xicluna.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 2.5.5 documentation

VCS Hooks

flake8 can install hooks for Mercurial and Git so that flake8 is run
automatically before commits. The commit will fail if there are any
flake8 issues.

You can install the hook by issuing this command in the root of your
project:

$ flake8 --install-hook

In the case of Git, the hook won’t be installed if a custom
pre-commit hook file is already present in
the .git/hooks directory.

You can control the behavior of the pre-commit hook using configuration file
settings or environment variables:

	flake8.complexity or FLAKE8_COMPLEXITY

	Any value > 0 enables complexity checking with McCabe. (defaults
to 10)

	flake8.strict or FLAKE8_STRICT

	If True, this causes the commit to fail in case of any errors at
all. (defaults to False)

	flake8.ignore or FLAKE8_IGNORE

	Comma-separated list of errors and warnings to ignore. (defaults to
empty)

	flake8.lazy or FLAKE8_LAZY

	If True, also scans those files not added to the index before
commit. (defaults to False)

You can set these either through the git command line

$ git config flake8.complexity 10
$ git config flake8.strict true

Or by directly editing .git/config and adding a section like

[flake8]
 complexity = 10
 strict = true
 lazy = false

 Copyright 2012-2013 - Tarek Ziade, Ian Cordasco, Florent Xicluna.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 2.5.5 documentation

Buildout integration

In order to use Flake8 inside a buildout, edit your buildout.cfg and add this:

[buildout]

parts +=
 ...
 flake8

[flake8]
recipe = zc.recipe.egg
eggs = flake8
 ${buildout:eggs}
entry-points =
 flake8=flake8.main:main

 Copyright 2012-2013 - Tarek Ziade, Ian Cordasco, Florent Xicluna.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 2.5.5 documentation

Setuptools integration

Upon installation, Flake8 enables a setuptools command that checks Python
files declared by your project.

Running python setup.py flake8 on the command line will check the files
listed in your py_modules and packages. If any warning is found,
the command will exit with an error code:

$ python setup.py flake8

Also, to allow users to be able to use the command without having to install
flake8 themselves, add flake8 to the setup_requires of your setup() like so:

setup(
 name="project",
 packages=["project"],

 setup_requires=[
 "flake8"
]
)

 Copyright 2012-2013 - Tarek Ziade, Ian Cordasco, Florent Xicluna.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 2.5.5 documentation

Flake8 API

flake8.engine

	
flake8.engine.get_parser()

	This returns an instance of optparse.OptionParser with all the
extensions registered and options set. This wraps pep8.get_parser.

	
flake8.engine.get_style_guide(**kwargs)

	Parse the options and configure the checker. This returns a sub-class
of pep8.StyleGuide.

flake8.hooks

	
flake8.hooks.git_hook(complexity=-1, strict=False, ignore=None, lazy=False)

	This is the function used by the git hook.

	Parameters:	
	complexity (int) – (optional), any value > 0 enables complexity
checking with mccabe

	strict (bool) – (optional), if True, this returns the total number of
errors which will cause the hook to fail

	ignore (str) – (optional), a comma-separated list of errors and
warnings to ignore

	lazy (bool) – (optional), allows for the instances where you don’t add
the files to the index before running a commit, e.g., git commit -a

	Returns:	total number of errors if strict is True, otherwise 0

	
flake8.hooks.hg_hook(ui, repo, **kwargs)

	This is the function executed directly by Mercurial as part of the
hook. This is never called directly by the user, so the parameters are
undocumented. If you would like to learn more about them, please feel free
to read the official Mercurial documentation.

flake8.main

	
flake8.main.main()

	Parse options and run checks on Python source.

	
flake8.main.check_file(path, ignore=(), complexity=-1)

	Checks a file using pep8 and pyflakes by default and mccabe
optionally.

	Parameters:	
	path (str) – path to the file to be checked

	ignore (tuple) – (optional), error and warning codes to be ignored

	complexity (int) – (optional), enables the mccabe check for values > 0

	
flake8.main.check_code(code, ignore=(), complexity=-1)

	Checks code using pep8 and pyflakes by default and mccabe optionally.

	Parameters:	
	code (str) – code to be checked

	ignore (tuple) – (optional), error and warning codes to be ignored

	complexity (int) – (optional), enables the mccabe check for values > 0

	
class flake8.main.Flake8Command(dist, **kw)

	The Flake8Command class is used by setuptools to perform
checks on registered modules.

flake8.util

For AST checkers, this module has the iter_child_nodes function and
handles compatibility for all versions of Python between 2.5 and 3.3. The
function was added to the ast module in Python 2.6 but is redefined in the
case where the user is running Python 2.5

 Copyright 2012-2013 - Tarek Ziade, Ian Cordasco, Florent Xicluna.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	flake8 2.5.5 documentation

Writing an Extension for Flake8

Since Flake8 is now adding support for extensions, we require setuptools
so we can manage extensions through entry points. If you are making an
existing tool compatible with Flake8 but do not already require
setuptools, you should probably add it to your list of requirements. Next,
you’ll need to edit your setup.py file so that upon installation, your
extension is registered. If you define a class called PackageEntryClass
then this would look something like the following:

setup(
 # ...
 entry_points={
 'flake8.extension': ['P10 = package.PackageEntryClass'],
 }
 # ...
)

If you intend to publish your extension, choose a unique code prefix
following the convention for error codes.
In addition, you can open a request in the issue tracker [https://bitbucket.org/tarek/flake8/issues] to register the prefix in the
documentation.

A real example: McCabe

Below is an example from mccabe [https://github.com/flintwork/mccabe] for how to write your setup.py file for
your Flake8 extension.

https://github.com/flintwork/mccabe/blob/0.2/setup.py#L38:L42
-*- coding: utf-8 -*-
from setuptools import setup

...

setup(
 name='mccabe',

 # ...

 install_requires=[
 'setuptools',
],
 entry_points={
 'flake8.extension': [
 'C90 = mccabe:McCabeChecker',
],
 },

 # ...

)

In mccabe.py you can see that extra options are added to the parser when
flake8 registers the extension:

https://github.com/flintwork/mccabe/blob/0.2/mccabe.py#L225:L254
class McCabeChecker(object):
 """McCabe cyclomatic complexity checker."""
 name = 'mccabe'
 version = __version__
 _code = 'C901'
 _error_tmpl = "C901 %r is too complex (%d)"
 max_complexity = 0

 def __init__(self, tree, filename):
 self.tree = tree

 @classmethod
 def add_options(cls, parser):
 parser.add_option('--max-complexity', default=-1, action='store',
 type='int', help="McCabe complexity threshold")
 parser.config_options.append('max-complexity')

 @classmethod
 def parse_options(cls, options):
 cls.max_complexity = options.max_complexity

 def run(self):
 if self.max_complexity < 0:
 return
 visitor = PathGraphingAstVisitor()
 visitor.preorder(self.tree, visitor)
 for graph in visitor.graphs.values():
 if graph.complexity() >= self.max_complexity:
 text = self._error_tmpl % (graph.entity, graph.complexity())
 yield graph.lineno, 0, text, type(self)

Since that is the defined entry point in the above setup.py, flake8 finds
it and uses it to register the extension.

If we wanted the extension or a check to be optional, you can add
off_by_default = True to our entry point. For example, we could
update mccabe.py with this variable as shown below:

https://github.com/flintwork/mccabe/blob/0.2/mccabe.py#L225:L254
class McCabeChecker(object):
 """McCabe cyclomatic complexity checker."""
 name = 'mccabe'
 version = __version__
 off_by_default = True

If we wanted to run the optional extension or check, we need to specify the
error and warnings via the --enable-extension command line argument. In our
case, we could run flake8 --enable-extension=C90 which would enable our
off_by_default example version of the mccabe extension.

Existing Extensions

This is not at all a comprehensive listing of existing extensions but simply a
listing of the ones we are aware of:

	flake8-debugger [https://github.com/JBKahn/flake8-debugger]

	flake8-immediate [https://github.com/schlamar/flake8-immediate]

	flake8-print [https://github.com/JBKahn/flake8-print]

	flake8-todo [https://github.com/schlamar/flake8-todo]

	pep8-naming [https://github.com/flintwork/pep8-naming]

	radon [https://github.com/rubik/radon]

	flake8-import-order [https://github.com/public/flake8-import-order]

	flake8-respect-noqa [https://pypi.python.org/pypi/flake8-respect-noqa]

 Copyright 2012-2013 - Tarek Ziade, Ian Cordasco, Florent Xicluna.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	flake8 2.5.5 documentation

Changes

2.5.5 - 2016-06-14

	Bug Fix setuptools integration when parsing config files

	Bug Don’t pass the user’s config path as the config_file when creating a
StyleGuide

2.5.4 - 2016-02-11

	Bug Missed an attribute rename during the v2.5.3 release.

2.5.3 - 2016-02-11

	Bug Actually parse output_file and enable_extensions from config
files

2.5.2 - 2016-01-30

	Bug Parse output_file and enable_extensions from config files

	Improvement Raise upper bound on mccabe plugin to allow for version
0.4.0

2.5.1 - 2015-12-08

	Bug Properly look for .flake8 in current working directory
(GitLab#103 [https://gitlab.com/pycqa/flake8/issues/103])

	Bug Monkey-patch pep8.stdin_get_value to cache the actual value in
stdin. This helps plugins relying on the function when run with
multiprocessing. (GitLab#105 [https://gitlab.com/pycqa/flake8/issues/105], GitLab#107 [https://gitlab.com/pycqa/flake8/issues/107])

2.5.0 - 2015-10-26

	Improvement Raise cap on PyFlakes for Python 3.5 support

	Improvement Avoid deprecation warnings when loading extensions
(GitLab#59 [https://gitlab.com/pycqa/flake8/issues/59], GitLab#90 [https://gitlab.com/pycqa/flake8/issues/90])

	Improvement Separate logic to enable “off-by-default” extensions
(GitLab#67 [https://gitlab.com/pycqa/flake8/issues/67])

	Bug Properly parse options to setuptools Flake8 command (GitLab!41 [https://gitlab.com/pycqa/flake8/merge_requests/41])

	Bug Fix exceptions when output on stdout is truncated before Flake8
finishes writing the output (GitLab#69 [https://gitlab.com/pycqa/flake8/issues/69])

	Bug Fix error on OS X where Flake8 can no longer acquire or create new
semaphores (GitLab#74 [https://gitlab.com/pycqa/flake8/issues/74])

2.4.1 - 2015-05-18

	Bug Do not raise a SystemError unless there were errors in the
setuptools command. (GitLab#39 [https://gitlab.com/pycqa/flake8/issues/39], GitLab!23 [https://gitlab.com/pycqa/flake8/merge_requests/23])

	Bug Do not verify dependencies of extensions loaded via entry-points.

	Improvement Blacklist versions of pep8 we know are broken

2.4.0 - 2015-03-07

	Bug Print filenames when using multiprocessing and -q option.
(GitLab#31 [https://gitlab.com/pycqa/flake8/issues/31])

	Bug Put upper cap on dependencies. The caps for 2.4.0 are:

	pep8 < 1.6 (Related to GitLab#35 [https://gitlab.com/pycqa/flake8/issues/35])

	mccabe < 0.4

	pyflakes < 0.9

See also GitLab#32 [https://gitlab.com/pycqa/flake8/issues/32]

	Bug Files excluded in a config file were not being excluded when flake8
was run from a git hook. (GitHub#2 [https://github.com/pycqa/flake8/pull/2])

	Improvement Print warnings for users who are providing mutually
exclusive options to flake8. (GitLab#8 [https://gitlab.com/pycqa/flake8/issues/8], GitLab!18 [https://gitlab.com/pycqa/flake8/merge_requests/18])

	Feature Allow git hook configuration to live in .git/config.
See the updated VCS hooks docs [https://flake8.readthedocs.org/en/latest/vcs.html] for more details. (GitLab!20 [https://gitlab.com/pycqa/flake8/merge_requests/20])

2.3.0 - 2015-01-04

	Feature: Add --output-file option to specify a file to write to
instead of stdout.

	Bug Fix interleaving of output while using multiprocessing
(GitLab#17 [https://gitlab.com/pycqa/flake8/issues/17])

2.2.5 - 2014-10-19

	Flush standard out when using multiprocessing

	Make the check for “# flake8: noqa” more strict

2.2.4 - 2014-10-09

	Fix bugs triggered by turning multiprocessing on by default (again)

Multiprocessing is forcibly disabled in the following cases:

	Passing something in via stdin

	Analyzing a diff

	Using windows

	Fix –install-hook when there are no config files present for pep8 or
flake8.

	Fix how the setuptools command parses excludes in config files

	Fix how the git hook determines which files to analyze (Thanks Chris
Buccella!)

2.2.3 - 2014-08-25

	Actually turn multiprocessing on by default

2.2.2 - 2014-07-04

	Re-enable multiprocessing by default while fixing the issue Windows users
were seeing.

2.2.1 - 2014-06-30

	Turn off multiple jobs by default. To enable automatic use of all CPUs, use
--jobs=auto. Fixes #155 and #154.

2.2.0 - 2014-06-22

	New option doctests to run Pyflakes checks on doctests too

	New option jobs to launch multiple jobs in parallel

	Turn on using multiple jobs by default using the CPU count

	Add support for python -m flake8 on Python 2.7 and Python 3

	Fix Git and Mercurial hooks: issues #88, #133, #148 and #149

	Fix crashes with Python 3.4 by upgrading dependencies

	Fix traceback when running tests with Python 2.6

	Fix the setuptools command python setup.py flake8 to read
the project configuration

2.1.0 - 2013-10-26

	Add FLAKE8_LAZY and FLAKE8_IGNORE environment variable support to git and
mercurial hooks

	Force git and mercurial hooks to repsect configuration in setup.cfg

	Only check staged files if that is specified

	Fix hook file permissions

	Fix the git hook on python 3

	Ignore non-python files when running the git hook

	Ignore .tox directories by default

	Flake8 now reports the column number for PyFlakes messages

2.0.0 - 2013-02-23

	Pyflakes errors are prefixed by an F instead of an E

	McCabe complexity warnings are prefixed by a C instead of a W

	Flake8 supports extensions through entry points

	Due to the above support, we require setuptools

	We publish the documentation [https://flake8.readthedocs.org/]

	Fixes #13: pep8, pyflakes and mccabe become external dependencies

	Split run.py into main.py, engine.py and hooks.py for better logic

	Expose our parser for our users

	New feature: Install git and hg hooks automagically

	By relying on pyflakes (0.6.1), we also fixed #45 and #35

1.7.0 - 2012-12-21

	Fixes part of #35: Exception for no WITHITEM being an attribute of Checker
for Python 3.3

	Support stdin

	Incorporate @phd’s builtins pull request

	Fix the git hook

	Update pep8.py to the latest version

1.6.2 - 2012-11-25

	fixed the NameError: global name ‘message’ is not defined (#46)

1.6.1 - 2012-11-24

	fixed the mercurial hook, a change from a previous patch was not properly
applied

	fixed an assumption about warnings/error messages that caused an exception
to be thrown when McCabe is used

1.6 - 2012-11-16

	changed the signatures of the check_file function in flake8/run.py,
skip_warning in flake8/util.py and the check, checkPath
functions in flake8/pyflakes.py.

	fix --exclude and --ignore command flags (#14, #19)

	fix the git hook that wasn’t catching files not already added to the index
(#29)

	pre-emptively includes the addition to pep8 to ignore certain lines.
Add # nopep8 to the end of a line to ignore it. (#37)

	check_file can now be used without any special prior setup (#21)

	unpacking exceptions will no longer cause an exception (#20)

	fixed crash on non-existent file (#38)

1.5 - 2012-10-13

	fixed the stdin

	make sure mccabe catches the syntax errors as warnings

	pep8 upgrade

	added max_line_length default value

	added Flake8Command and entry points if setuptools is around

	using the setuptools console wrapper when available

1.4 - 2012-07-12

	git_hook: Only check staged changes for compliance

	use pep8 1.2

1.3.1 - 2012-05-19

	fixed support for Python 2.5

1.3 - 2012-03-12

	fixed false W402 warning on exception blocks.

1.2 - 2012-02-12

	added a git hook

	now Python 3 compatible

	mccabe and pyflakes have warning codes like pep8 now

1.1 - 2012-02-14

	fixed the value returned by –version

	allow the flake8: header to be more generic

	fixed the “hg hook raises ‘physical lines’” bug

	allow three argument form of raise

	now uses setuptools if available, for ‘develop’ command

1.0 - 2011-11-29

	Deactivates by default the complexity checker

	Introduces the complexity option in the HG hook and the command line.

0.9 - 2011-11-09

	update pep8 version to 0.6.1

	mccabe check: gracefully handle compile failure

0.8 - 2011-02-27

	fixed hg hook

	discard unexisting files on hook check

0.7 - 2010-02-18

	Fix pep8 initialization when run through Hg

	Make pep8 short options work when run through the command line

	Skip duplicates when controlling files via Hg

0.6 - 2010-02-15

	Fix the McCabe metric on some loops

 Copyright 2012-2013 - Tarek Ziade, Ian Cordasco, Florent Xicluna.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	flake8 2.5.5 documentation

 Python Module Index

 f

 			

 		
 f	

 	
 	
 flake8	

 Copyright 2012-2013 - Tarek Ziade, Ian Cordasco, Florent Xicluna.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	flake8 2.5.5 documentation

Index

 C
 | F
 | G
 | H
 | M

C

 	

 	check_code() (in module flake8.main)

 	

 	check_file() (in module flake8.main)

F

 	

 	flake8 (module)

 	

 	Flake8Command (class in flake8.main)

G

 	

 	get_parser() (in module flake8.engine)

 	get_style_guide() (in module flake8.engine)

 	

 	git_hook() (in module flake8.hooks)

H

 	

 	hg_hook() (in module flake8.hooks)

M

 	

 	main() (in module flake8.main)

 Copyright 2012-2013 - Tarek Ziade, Ian Cordasco, Florent Xicluna.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		flake8 2.5.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012-2013 - Tarek Ziade, Ian Cordasco, Florent Xicluna.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

